Design and Evaluation of a Surface Electromyography-Controlled Steering Assistance Interface

Millions of drivers could experience shoulder muscle overload when rapidly rotating steering wheels and reduced steering ability at increased steering wheel angles. In order to address these issues for drivers with disability, surface electromyography (sEMG) sensors measuring biceps brachii muscle a...

Full description

Bibliographic Details
Main Authors: Edric John Cruz Nacpil, Zheng Wang, Rencheng Zheng, Tsutomu Kaizuka, Kimihiko Nakano
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/19/6/1308
Description
Summary:Millions of drivers could experience shoulder muscle overload when rapidly rotating steering wheels and reduced steering ability at increased steering wheel angles. In order to address these issues for drivers with disability, surface electromyography (sEMG) sensors measuring biceps brachii muscle activity were incorporated into a steering assistance system for remote steering wheel rotation. The path-following accuracy of the sEMG interface with respect to a game steering wheel was evaluated through driving simulator trials. Human participants executed U-turns with differing radii of curvature. For a radius of curvature equal to the minimum vehicle turning radius of 3.6 m, the sEMG interface had significantly greater accuracy than the game steering wheel, with intertrial median lateral errors of 0.5 m and 1.2 m, respectively. For a U-turn with a radius of 7.2 m, the sEMG interface and game steering wheel were comparable in accuracy, with respective intertrial median lateral errors of 1.6 m and 1.4 m. The findings of this study could be utilized to realize accurate sEMG-controlled automobile steering for persons with disability.
ISSN:1424-8220