Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes

The rapid development of E-commerce has given rise to many marketplaces in Indonesia such as Tokopedia, Shopee, Lazada. Tokopedia, Shopee and Lazada applications are applications that help sellers and buyers to make sales and purchase transactions for goods and services. Until now, of the three majo...

Full description

Bibliographic Details
Main Authors: Bintang Zulfikar Ramadhan, Riza Ibnu Adam, Iqbal Maulana
Format: Article
Language:English
Published: Politeknik Negeri Batam 2022-12-01
Series:Journal of Applied Informatics and Computing
Subjects:
Online Access:https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4725
_version_ 1811197224129921024
author Bintang Zulfikar Ramadhan
Riza Ibnu Adam
Iqbal Maulana
author_facet Bintang Zulfikar Ramadhan
Riza Ibnu Adam
Iqbal Maulana
author_sort Bintang Zulfikar Ramadhan
collection DOAJ
description The rapid development of E-commerce has given rise to many marketplaces in Indonesia such as Tokopedia, Shopee, Lazada. Tokopedia, Shopee and Lazada applications are applications that help sellers and buyers to make sales and purchase transactions for goods and services. Until now, of the three major E-Commerce applications, around 100 million users have downloaded the three E-Commerce applications. With the launch of some of these applications, it has caused a lot of opinions and criticisms from the public. Based on this, a sentiment analysis of the Naïve Bayes algorithm was carried out to find out how the sentiment of users compares to the E-Commerce application on the Google Play Store. This research uses the Knowledge Discovery in Database (KDD) method which consists of 5 stages, namely data selection, preprocessing, transformation, data mining, and evaluation. The data used is a review of 500 E-Commerce applications per each application. At the data mining stage, it is carried out with 3 scenarios data sharing is 80:20, 70:30 and 60:40. The best results were obtained in scenario 1 (80:20) on the Shopee application using the Naïve Bayes algorithm which resulted in an accuracy of 92%, precision of 92.13%, recall of 98.8% and f1-score of 95.35%.
first_indexed 2024-04-12T01:10:52Z
format Article
id doaj.art-3fbaae21694a43c894f679801d0b595e
institution Directory Open Access Journal
issn 2548-6861
language English
last_indexed 2024-04-12T01:10:52Z
publishDate 2022-12-01
publisher Politeknik Negeri Batam
record_format Article
series Journal of Applied Informatics and Computing
spelling doaj.art-3fbaae21694a43c894f679801d0b595e2022-12-22T03:54:05ZengPoliteknik Negeri BatamJournal of Applied Informatics and Computing2548-68612022-12-016222022510.30871/jaic.v6i2.47254725Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve BayesBintang Zulfikar Ramadhan0Riza Ibnu Adam1Iqbal Maulana2Universitas Singaperbangsa KarawangUniversitas Singaperbangsa KarawangUniversitas Singaperbangsa KarawangThe rapid development of E-commerce has given rise to many marketplaces in Indonesia such as Tokopedia, Shopee, Lazada. Tokopedia, Shopee and Lazada applications are applications that help sellers and buyers to make sales and purchase transactions for goods and services. Until now, of the three major E-Commerce applications, around 100 million users have downloaded the three E-Commerce applications. With the launch of some of these applications, it has caused a lot of opinions and criticisms from the public. Based on this, a sentiment analysis of the Naïve Bayes algorithm was carried out to find out how the sentiment of users compares to the E-Commerce application on the Google Play Store. This research uses the Knowledge Discovery in Database (KDD) method which consists of 5 stages, namely data selection, preprocessing, transformation, data mining, and evaluation. The data used is a review of 500 E-Commerce applications per each application. At the data mining stage, it is carried out with 3 scenarios data sharing is 80:20, 70:30 and 60:40. The best results were obtained in scenario 1 (80:20) on the Shopee application using the Naïve Bayes algorithm which resulted in an accuracy of 92%, precision of 92.13%, recall of 98.8% and f1-score of 95.35%.https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4725sentiment analysisnaïve bayese-commerce
spellingShingle Bintang Zulfikar Ramadhan
Riza Ibnu Adam
Iqbal Maulana
Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
Journal of Applied Informatics and Computing
sentiment analysis
naïve bayes
e-commerce
title Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
title_full Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
title_fullStr Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
title_full_unstemmed Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
title_short Analisis Sentimen Ulasan pada Aplikasi E-Commerce dengan Menggunakan Algoritma Naïve Bayes
title_sort analisis sentimen ulasan pada aplikasi e commerce dengan menggunakan algoritma naive bayes
topic sentiment analysis
naïve bayes
e-commerce
url https://jurnal.polibatam.ac.id/index.php/JAIC/article/view/4725
work_keys_str_mv AT bintangzulfikarramadhan analisissentimenulasanpadaaplikasiecommercedenganmenggunakanalgoritmanaivebayes
AT rizaibnuadam analisissentimenulasanpadaaplikasiecommercedenganmenggunakanalgoritmanaivebayes
AT iqbalmaulana analisissentimenulasanpadaaplikasiecommercedenganmenggunakanalgoritmanaivebayes