Epigallocatechin-3-gallate (EGCG) Alters Histone Acetylation and Methylation and Impacts Chromatin Architecture Profile in Human Endothelial Cells

Epigallocatechin gallate (EGCG), the main green tea polyphenol, exerts a wide variety of biological actions. Epigenetically, the catechin has been classified as a DNMTs inhibitor, however, its impact on histone modifications and chromatin structure is still poorly understood. The purpose of this stu...

Full description

Bibliographic Details
Main Authors: Oskar Ciesielski, Marta Biesiekierska, Aneta Balcerczyk
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/25/10/2326
Description
Summary:Epigallocatechin gallate (EGCG), the main green tea polyphenol, exerts a wide variety of biological actions. Epigenetically, the catechin has been classified as a DNMTs inhibitor, however, its impact on histone modifications and chromatin structure is still poorly understood. The purpose of this study was to find the impact of EGCG on the histone posttranslational modifications machinery and chromatin remodeling in human endothelial cells of both microvascular (HMEC-1) and vein (HUVECs) origin. We analyzed the methylation and acetylation status of histones (Western blotting), as well as assessed the activity (fluorometric assay kit) and gene expression (qPCR) of the enzymes playing a prominent role in shaping the human epigenome. The performed analyses showed that EGCG increases histone acetylation (H3K9/14ac, H3ac), and methylation of both active (H3K4me3) and repressive (H3K9me3) chromatin marks. We also found that the catechin acts as an HDAC inhibitor in cellular and cell-free models. Additionally, we observed that EGCG affects chromatin architecture by reducing the expression of heterochromatin binding proteins: HP1α, HP1γ. Our results indicate that EGCG promotes chromatin relaxation in human endothelial cells and presents a broad epigenetic potential affecting expression and activity of epigenome modulators including HDAC5 and 7, p300, CREBP, LSD1 or KMT2A.
ISSN:1420-3049