Hepatitis B virus X protein upregulates mTOR signaling through IKKβ to increase cell proliferation and VEGF production in hepatocellular carcinoma.

Hepatocellular carcinoma (HCC), a major cause of cancer-related death in Southeast Asia, is frequently associated with hepatitis B virus (HBV) infection. HBV X protein (HBx), encoded by a viral non-structural gene, is a multifunctional regulator in HBV-associated tumor development. We investigated n...

Full description

Bibliographic Details
Main Authors: Chia-Jui Yen, Yih-Jyh Lin, Chia-Sheng Yen, Hung-Wen Tsai, Ting-Fen Tsai, Kwang-Yu Chang, Wei-Chien Huang, Pin-Wen Lin, Chi-Wu Chiang, Ting-Tsung Chang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22848663/pdf/?tool=EBI
Description
Summary:Hepatocellular carcinoma (HCC), a major cause of cancer-related death in Southeast Asia, is frequently associated with hepatitis B virus (HBV) infection. HBV X protein (HBx), encoded by a viral non-structural gene, is a multifunctional regulator in HBV-associated tumor development. We investigated novel signaling pathways underlying HBx-induced liver tumorigenesis and found that the signaling pathway involving IκB kinase β (IKKβ), tuberous sclerosis complex 1 (TSC1), and mammalian target of rapamycin (mTOR) downstream effector S6 kinase (S6K1), was upregulated when HBx was overexpressed in hepatoma cells. HBx-induced S6K1 activation was reversed by IKKβ inhibitor Bay 11-7082 or silencing IKKβ expression using siRNA. HBx upregulated cell proliferation and vascular endothelial growth factor (VEGF) production, and these HBx-upregulated phenotypes were abolished by treatment with IKKβ inhibitor Bay 11-7082 or mTOR inhibitor rapamycin. The association of HBx-modulated IKKβ/mTOR/S6K1 signaling with liver tumorigenesis was verified in a HBx transgenic mouse model in which pIKKβ, pS6K1, and VEGF expression was found to be higher in cancerous than non-cancerous liver tissues. Furthermore, we also found that pIKKβ levels were strongly correlated with pTSC1 and pS6K1 levels in HBV-associated hepatoma tissue specimens taken from 95 patients, and that higher pIKKβ, pTSC1, and pS6K1 levels were correlated with a poor prognosis in these patients. Taken together, our findings demonstrate that HBx deregulates TSC1/mTOR signaling through IKKβ, which is crucially linked to HBV-associated HCC development.
ISSN:1932-6203