Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution

This paper studies a class of quasi-cyclic LDPC (QC-LDPC) codes, i.e., Tanner (3, 23)-regular QC-LDPC codes of code length <inline-formula> <tex-math notation="LaTeX">$23p$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX&qu...

Full description

Bibliographic Details
Main Authors: Qi Wang, Jingping Che, Huaan Li, Zhen Luo, Bo Zhang, Hui Liu
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10409168/
_version_ 1797296331284283392
author Qi Wang
Jingping Che
Huaan Li
Zhen Luo
Bo Zhang
Hui Liu
author_facet Qi Wang
Jingping Che
Huaan Li
Zhen Luo
Bo Zhang
Hui Liu
author_sort Qi Wang
collection DOAJ
description This paper studies a class of quasi-cyclic LDPC (QC-LDPC) codes, i.e., Tanner (3, 23)-regular QC-LDPC codes of code length <inline-formula> <tex-math notation="LaTeX">$23p$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> being a prime and <inline-formula> <tex-math notation="LaTeX">$p \equiv 1 (\mathrm {mod} 69)$ </tex-math></inline-formula>. We first analyze the cycle structure of Tanner (3, 23)-regular QC-LDPC codes, and divide their cycles of lengths 4, 6, 8, and 10 into five equivalent types. We propose the sufficient and necessary condition for the existence of these five types of cycles, i.e., the polynomial equations in a 69th unit root of the prime field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{p}$ </tex-math></inline-formula>. We check the existence of solutions for such polynomial equations by using the Euclidean division algorithm and obtain the candidate girth values of Tanner (3, 23)-regular QC-LDPC codes. We summarize the results and determine the girth distribution of Tanner (3, 23)-regular QC-LDPC codes.
first_indexed 2024-03-07T22:03:05Z
format Article
id doaj.art-3fc1cb1ccd154cc9b981c5724edb4f2e
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-07T22:03:05Z
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-3fc1cb1ccd154cc9b981c5724edb4f2e2024-02-24T00:00:28ZengIEEEIEEE Access2169-35362024-01-0112265912660910.1109/ACCESS.2024.335592610409168Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth DistributionQi Wang0https://orcid.org/0009-0009-6925-255XJingping Che1Huaan Li2https://orcid.org/0000-0003-3779-4505Zhen Luo3Bo Zhang4https://orcid.org/0000-0003-3779-4505Hui Liu5School of Network Engineering, Zhoukou Normal University, Zhoukou, ChinaSchool of Network Engineering, Zhoukou Normal University, Zhoukou, ChinaSchool of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, ChinaSchool of Network Engineering, Zhoukou Normal University, Zhoukou, ChinaHenan Provincial Research Center of Wisdom Education and Intelligent Technology Application Engineering Technology, Zhengzhou Railway Vocational Technical College, Zhengzhou, ChinaHenan Provincial Research Center of Wisdom Education and Intelligent Technology Application Engineering Technology, Zhengzhou Railway Vocational Technical College, Zhengzhou, ChinaThis paper studies a class of quasi-cyclic LDPC (QC-LDPC) codes, i.e., Tanner (3, 23)-regular QC-LDPC codes of code length <inline-formula> <tex-math notation="LaTeX">$23p$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math></inline-formula> being a prime and <inline-formula> <tex-math notation="LaTeX">$p \equiv 1 (\mathrm {mod} 69)$ </tex-math></inline-formula>. We first analyze the cycle structure of Tanner (3, 23)-regular QC-LDPC codes, and divide their cycles of lengths 4, 6, 8, and 10 into five equivalent types. We propose the sufficient and necessary condition for the existence of these five types of cycles, i.e., the polynomial equations in a 69th unit root of the prime field <inline-formula> <tex-math notation="LaTeX">$\mathbb {F}_{p}$ </tex-math></inline-formula>. We check the existence of solutions for such polynomial equations by using the Euclidean division algorithm and obtain the candidate girth values of Tanner (3, 23)-regular QC-LDPC codes. We summarize the results and determine the girth distribution of Tanner (3, 23)-regular QC-LDPC codes.https://ieeexplore.ieee.org/document/10409168/LDPC codesquasi-cyclic (QC)girthEuclidean division algorithmprime field
spellingShingle Qi Wang
Jingping Che
Huaan Li
Zhen Luo
Bo Zhang
Hui Liu
Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
IEEE Access
LDPC codes
quasi-cyclic (QC)
girth
Euclidean division algorithm
prime field
title Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
title_full Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
title_fullStr Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
title_full_unstemmed Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
title_short Tanner (3, 23)-Regular QC-LDPC Codes: Cycle Structure and Girth Distribution
title_sort tanner 3 23 regular qc ldpc codes cycle structure and girth distribution
topic LDPC codes
quasi-cyclic (QC)
girth
Euclidean division algorithm
prime field
url https://ieeexplore.ieee.org/document/10409168/
work_keys_str_mv AT qiwang tanner323regularqcldpccodescyclestructureandgirthdistribution
AT jingpingche tanner323regularqcldpccodescyclestructureandgirthdistribution
AT huaanli tanner323regularqcldpccodescyclestructureandgirthdistribution
AT zhenluo tanner323regularqcldpccodescyclestructureandgirthdistribution
AT bozhang tanner323regularqcldpccodescyclestructureandgirthdistribution
AT huiliu tanner323regularqcldpccodescyclestructureandgirthdistribution