Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources

The decentralized feed-ins from distributed energy resources (DER) represent a significant change in the manner in which the power grid is used. If this leads to high loads on electrical equipment, its aging can be accelerated. This applies in particular with regard to the thermal aging of older gen...

Full description

Bibliographic Details
Main Authors: Martin Zapf, Tobias Blenk, Ann-Catrin Müller, Hermann Pengg, Ivana Mladenovic, Christian Weindl
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/2/494
_version_ 1797410082674180096
author Martin Zapf
Tobias Blenk
Ann-Catrin Müller
Hermann Pengg
Ivana Mladenovic
Christian Weindl
author_facet Martin Zapf
Tobias Blenk
Ann-Catrin Müller
Hermann Pengg
Ivana Mladenovic
Christian Weindl
author_sort Martin Zapf
collection DOAJ
description The decentralized feed-ins from distributed energy resources (DER) represent a significant change in the manner in which the power grid is used. If this leads to high loads on electrical equipment, its aging can be accelerated. This applies in particular with regard to the thermal aging of older generations of power cables, namely paper insulated lead covered (PILC) cables. This type of power cable can still be found frequently in medium voltage (MV) networks. If aging of these cables is significantly accelerated in the presence of DER, distribution system operators (DSO) could face unplanned premature cable failures and a high replacement demand and costs. Therefore, this paper investigates the thermal aging of PILC cables in a MV distribution network benchmark for different load scenarios, using standardized load profiles and representative expansion scenarios for wind power and photovoltaics plants in particularly affected network areas in Germany. A main objective of this paper is to present a methodology for estimating the thermal degradation of PILC cables. An approach is used to draw simplified conclusions from the loading of cables to their conductor or insulation temperature. For this purpose, mainly Joule losses are considered. In addition, thermal time constants are used for the heating and cooling processes. Based on the insulation temperature, thermal aging is determined using the Arrhenius law or the Montsinger rule. However, it is important to note that there is an urgent need for research on reference data in this area. For this reason, the results of the lifetime estimation presented in this paper should only be considered as an approximation if the selected reference data from the literature for the aging model are actually applicable. The lifetime assessment is performed for a highly utilized line segment of the network benchmark. Accordingly, extreme values are examined. Different operational control strategies of DSO to limit cable utilization are investigated. The results show that the expansion of DER can lead to a short but high cable utilization, although the average utilization does not increase or increases only slightly. This can lead to significantly lower cable lifetimes. The possible influence of these temporarily high loads is shown by comparing the resulting cable lifetime with previous situations without DER. It is also shown that DSO could already reduce excessive aging of PILC cables by preventing overloads in a few hours of a year. In addition to these specific results, general findings on the network load due to the influence of DER are obtained, which are of interest for congestion management.
first_indexed 2024-03-09T04:24:42Z
format Article
id doaj.art-3fc21fb53d544ec6b0d1889d1bfc4c20
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-09T04:24:42Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-3fc21fb53d544ec6b0d1889d1bfc4c202023-12-03T13:42:07ZengMDPI AGEnergies1996-10732021-01-0114249410.3390/en14020494Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy ResourcesMartin Zapf0Tobias Blenk1Ann-Catrin Müller2Hermann Pengg3Ivana Mladenovic4Christian Weindl5Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, GermanyInstitute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, GermanyInstitute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, GermanyAUDI AG, 85045 Ingolstadt, GermanySiemens AG, 91058 Erlangen, GermanyInstitute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, GermanyThe decentralized feed-ins from distributed energy resources (DER) represent a significant change in the manner in which the power grid is used. If this leads to high loads on electrical equipment, its aging can be accelerated. This applies in particular with regard to the thermal aging of older generations of power cables, namely paper insulated lead covered (PILC) cables. This type of power cable can still be found frequently in medium voltage (MV) networks. If aging of these cables is significantly accelerated in the presence of DER, distribution system operators (DSO) could face unplanned premature cable failures and a high replacement demand and costs. Therefore, this paper investigates the thermal aging of PILC cables in a MV distribution network benchmark for different load scenarios, using standardized load profiles and representative expansion scenarios for wind power and photovoltaics plants in particularly affected network areas in Germany. A main objective of this paper is to present a methodology for estimating the thermal degradation of PILC cables. An approach is used to draw simplified conclusions from the loading of cables to their conductor or insulation temperature. For this purpose, mainly Joule losses are considered. In addition, thermal time constants are used for the heating and cooling processes. Based on the insulation temperature, thermal aging is determined using the Arrhenius law or the Montsinger rule. However, it is important to note that there is an urgent need for research on reference data in this area. For this reason, the results of the lifetime estimation presented in this paper should only be considered as an approximation if the selected reference data from the literature for the aging model are actually applicable. The lifetime assessment is performed for a highly utilized line segment of the network benchmark. Accordingly, extreme values are examined. Different operational control strategies of DSO to limit cable utilization are investigated. The results show that the expansion of DER can lead to a short but high cable utilization, although the average utilization does not increase or increases only slightly. This can lead to significantly lower cable lifetimes. The possible influence of these temporarily high loads is shown by comparing the resulting cable lifetime with previous situations without DER. It is also shown that DSO could already reduce excessive aging of PILC cables by preventing overloads in a few hours of a year. In addition to these specific results, general findings on the network load due to the influence of DER are obtained, which are of interest for congestion management.https://www.mdpi.com/1996-1073/14/2/494distribution network benchmarkload scenariosthermal network methodthermal time constantArrhenius lawMontsinger rule
spellingShingle Martin Zapf
Tobias Blenk
Ann-Catrin Müller
Hermann Pengg
Ivana Mladenovic
Christian Weindl
Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
Energies
distribution network benchmark
load scenarios
thermal network method
thermal time constant
Arrhenius law
Montsinger rule
title Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
title_full Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
title_fullStr Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
title_full_unstemmed Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
title_short Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
title_sort lifetime assessment of pilc cables with regard to thermal aging based on a medium voltage distribution network benchmark and representative load scenarios in the course of the expansion of distributed energy resources
topic distribution network benchmark
load scenarios
thermal network method
thermal time constant
Arrhenius law
Montsinger rule
url https://www.mdpi.com/1996-1073/14/2/494
work_keys_str_mv AT martinzapf lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources
AT tobiasblenk lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources
AT anncatrinmuller lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources
AT hermannpengg lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources
AT ivanamladenovic lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources
AT christianweindl lifetimeassessmentofpilccableswithregardtothermalagingbasedonamediumvoltagedistributionnetworkbenchmarkandrepresentativeloadscenariosinthecourseoftheexpansionofdistributedenergyresources