An approximation property of Gaussian functions

Using the power series method, we solve the inhomogeneous linear first order differential equation $$ y'(x) + lambda (x-mu) y(x) = sum_{m=0}^infty a_m (x-mu)^m, $$ and prove an approximation property of Gaussian functions.

Bibliographic Details
Main Authors: Soon-Mo Jung, Hamdullah Sevli, Sebaheddin Sevgin
Format: Article
Language:English
Published: Texas State University 2013-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/03/abstr.html
_version_ 1828256515154247680
author Soon-Mo Jung
Hamdullah Sevli
Sebaheddin Sevgin
author_facet Soon-Mo Jung
Hamdullah Sevli
Sebaheddin Sevgin
author_sort Soon-Mo Jung
collection DOAJ
description Using the power series method, we solve the inhomogeneous linear first order differential equation $$ y'(x) + lambda (x-mu) y(x) = sum_{m=0}^infty a_m (x-mu)^m, $$ and prove an approximation property of Gaussian functions.
first_indexed 2024-04-13T02:29:15Z
format Article
id doaj.art-3fdd1e50918b499f95833dde3111e3d1
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T02:29:15Z
publishDate 2013-01-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-3fdd1e50918b499f95833dde3111e3d12022-12-22T03:06:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-01-01201303,18An approximation property of Gaussian functionsSoon-Mo JungHamdullah SevliSebaheddin SevginUsing the power series method, we solve the inhomogeneous linear first order differential equation $$ y'(x) + lambda (x-mu) y(x) = sum_{m=0}^infty a_m (x-mu)^m, $$ and prove an approximation property of Gaussian functions.http://ejde.math.txstate.edu/Volumes/2013/03/abstr.htmlLinear first order differential equationpower series methodGaussian functionapproximationHyers-Ulam stabilitylocal Hyers-Ulam stability
spellingShingle Soon-Mo Jung
Hamdullah Sevli
Sebaheddin Sevgin
An approximation property of Gaussian functions
Electronic Journal of Differential Equations
Linear first order differential equation
power series method
Gaussian function
approximation
Hyers-Ulam stability
local Hyers-Ulam stability
title An approximation property of Gaussian functions
title_full An approximation property of Gaussian functions
title_fullStr An approximation property of Gaussian functions
title_full_unstemmed An approximation property of Gaussian functions
title_short An approximation property of Gaussian functions
title_sort approximation property of gaussian functions
topic Linear first order differential equation
power series method
Gaussian function
approximation
Hyers-Ulam stability
local Hyers-Ulam stability
url http://ejde.math.txstate.edu/Volumes/2013/03/abstr.html
work_keys_str_mv AT soonmojung anapproximationpropertyofgaussianfunctions
AT hamdullahsevli anapproximationpropertyofgaussianfunctions
AT sebaheddinsevgin anapproximationpropertyofgaussianfunctions
AT soonmojung approximationpropertyofgaussianfunctions
AT hamdullahsevli approximationpropertyofgaussianfunctions
AT sebaheddinsevgin approximationpropertyofgaussianfunctions