重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model

本研究利用「台灣教育長期追蹤資料庫」的一般分析能力與數學分析能力的四波調查結果,配合男、女學生樣本進行多群體多條追蹤資料的線性成長模式估計。在考慮重複觀測資料誤差項在不同時點的變異數非同質與不同時點間的共變數非獨立情況下,以及男、女學生的不同成長軌跡,將誤差項結構設為無限制結構,利用虛擬變項交互項法與虛擬變項多樣本法同時估計不同性別、不同能力的線性成長軌跡變化。由於全部追蹤資料樣本存在遺失值的情形,本研究以階層線性模式(hierarchical linear modeling, HLM)軟體對完整資料2,806位學生進行分析,其估計結果發現,在完整資料的兩條成長軌跡模式中,男、女學生誤差項共變...

Full description

Bibliographic Details
Main Author: 溫福星 Fur-Hsing Wen
Format: Article
Language:English
Published: National Taiwan Normal University 2012-03-01
Series:Journal of Research in Education Sciences
Subjects:
Online Access:http://jories.ntnu.edu.tw/jres/PaperContent.aspx?cid=169&ItemId=1349&loc=en
_version_ 1818050876663660544
author 溫福星 Fur-Hsing Wen
author_facet 溫福星 Fur-Hsing Wen
author_sort 溫福星 Fur-Hsing Wen
collection DOAJ
description 本研究利用「台灣教育長期追蹤資料庫」的一般分析能力與數學分析能力的四波調查結果,配合男、女學生樣本進行多群體多條追蹤資料的線性成長模式估計。在考慮重複觀測資料誤差項在不同時點的變異數非同質與不同時點間的共變數非獨立情況下,以及男、女學生的不同成長軌跡,將誤差項結構設為無限制結構,利用虛擬變項交互項法與虛擬變項多樣本法同時估計不同性別、不同能力的線性成長軌跡變化。由於全部追蹤資料樣本存在遺失值的情形,本研究以階層線性模式(hierarchical linear modeling, HLM)軟體對完整資料2,806位學生進行分析,其估計結果發現,在完整資料的兩條成長軌跡模式中,男、女學生誤差項共變異數矩陣結構相同,但線性成長軌跡不恆等。除此之外,本文並對競爭模式比較的結果在文章最後進行討論並提出相關的建議。 This paper demonstrates the data analysis of the repeated measures from the Taiwan Education Panel Survey (TEPS). Based on the four data waves on the TEPS, we consider two abilities (general and mathematic) and two population groups (male and female students) to construct a multi-group multivariate linear growth model. Because the two-group multivariate repeated measures belong to the different populations and the different research variables, the residual terms of linear growth models may imply heterogeneity of the error covariance structure. We treat the error covariance structure as an unrestricted structure to compare the various types of models. The results from the HLM on the complete data (2,806 students) reveal that the male and female students in this study have the same error covariance structure but have distinct linear growth trajectories. In addition, comparisons of the competitive models and related suggestions are discussed in the results and conclusion sections.
first_indexed 2024-12-10T11:00:26Z
format Article
id doaj.art-3fe43c1444b94972945d1de77e06b47a
institution Directory Open Access Journal
issn 2073-753X
language English
last_indexed 2024-12-10T11:00:26Z
publishDate 2012-03-01
publisher National Taiwan Normal University
record_format Article
series Journal of Research in Education Sciences
spelling doaj.art-3fe43c1444b94972945d1de77e06b47a2022-12-22T01:51:42ZengNational Taiwan Normal UniversityJournal of Research in Education Sciences2073-753X2012-03-01571517810.3966/2073753X2012035701003重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model溫福星 Fur-Hsing Wen0Department of International Business, Soochow University本研究利用「台灣教育長期追蹤資料庫」的一般分析能力與數學分析能力的四波調查結果,配合男、女學生樣本進行多群體多條追蹤資料的線性成長模式估計。在考慮重複觀測資料誤差項在不同時點的變異數非同質與不同時點間的共變數非獨立情況下,以及男、女學生的不同成長軌跡,將誤差項結構設為無限制結構,利用虛擬變項交互項法與虛擬變項多樣本法同時估計不同性別、不同能力的線性成長軌跡變化。由於全部追蹤資料樣本存在遺失值的情形,本研究以階層線性模式(hierarchical linear modeling, HLM)軟體對完整資料2,806位學生進行分析,其估計結果發現,在完整資料的兩條成長軌跡模式中,男、女學生誤差項共變異數矩陣結構相同,但線性成長軌跡不恆等。除此之外,本文並對競爭模式比較的結果在文章最後進行討論並提出相關的建議。 This paper demonstrates the data analysis of the repeated measures from the Taiwan Education Panel Survey (TEPS). Based on the four data waves on the TEPS, we consider two abilities (general and mathematic) and two population groups (male and female students) to construct a multi-group multivariate linear growth model. Because the two-group multivariate repeated measures belong to the different populations and the different research variables, the residual terms of linear growth models may imply heterogeneity of the error covariance structure. We treat the error covariance structure as an unrestricted structure to compare the various types of models. The results from the HLM on the complete data (2,806 students) reveal that the male and female students in this study have the same error covariance structure but have distinct linear growth trajectories. In addition, comparisons of the competitive models and related suggestions are discussed in the results and conclusion sections.http://jories.ntnu.edu.tw/jres/PaperContent.aspx?cid=169&ItemId=1349&loc=en多群體分析追蹤資料巢套階層線性模式線性成長模式multi-group analysislongitudinal datanestedhierarchical linear modelinglinear growth model
spellingShingle 溫福星 Fur-Hsing Wen
重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
Journal of Research in Education Sciences
多群體分析
追蹤資料
巢套
階層線性模式
線性成長模式
multi-group analysis
longitudinal data
nested
hierarchical linear modeling
linear growth model
title 重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
title_full 重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
title_fullStr 重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
title_full_unstemmed 重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
title_short 重複觀測量數之分析:多群體多變項線性成長模式的估計Data Analysis of Repeated Measures: Estimating a Multi-Group Multivariate Linear Growth Model
title_sort 重複觀測量數之分析 多群體多變項線性成長模式的估計data analysis of repeated measures estimating a multi group multivariate linear growth model
topic 多群體分析
追蹤資料
巢套
階層線性模式
線性成長模式
multi-group analysis
longitudinal data
nested
hierarchical linear modeling
linear growth model
url http://jories.ntnu.edu.tw/jres/PaperContent.aspx?cid=169&ItemId=1349&loc=en
work_keys_str_mv AT wēnfúxīngfurhsingwen zhòngfùguāncèliàngshùzhīfēnxīduōqúntǐduōbiànxiàngxiànxìngchéngzhǎngmóshìdegūjìdataanalysisofrepeatedmeasuresestimatingamultigroupmultivariatelineargrowthmodel