RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas

Improving cotton (<i>Gossypium hirsutum</i> L.) yield and water use efficiency (WUE) under future climate scenarios by optimizing irrigation regimes is crucial in hyper-arid areas. Assuming a current baseline atmospheric carbon dioxide concentration (<inline-formula><math xmlns=...

全面介绍

书目详细资料
Main Authors: Xiaoping Chen, Haibo Dong, Shaoyuan Feng, Dongwei Gui, Liwang Ma, Kelly R. Thorp, Hao Wu, Bo Liu, Zhiming Qi
格式: 文件
语言:English
出版: MDPI AG 2023-09-01
丛编:Agronomy
主题:
在线阅读:https://www.mdpi.com/2073-4395/13/10/2529
_version_ 1827722044904570880
author Xiaoping Chen
Haibo Dong
Shaoyuan Feng
Dongwei Gui
Liwang Ma
Kelly R. Thorp
Hao Wu
Bo Liu
Zhiming Qi
author_facet Xiaoping Chen
Haibo Dong
Shaoyuan Feng
Dongwei Gui
Liwang Ma
Kelly R. Thorp
Hao Wu
Bo Liu
Zhiming Qi
author_sort Xiaoping Chen
collection DOAJ
description Improving cotton (<i>Gossypium hirsutum</i> L.) yield and water use efficiency (WUE) under future climate scenarios by optimizing irrigation regimes is crucial in hyper-arid areas. Assuming a current baseline atmospheric carbon dioxide concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 380 ppm (baseline, BL<sub>0/380</sub>), the Root Zone Water Quality Model (RZWQM2) was used to evaluate the effects of four climate change scenarios—S<sub>1.5/380</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>1.5</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), S<sub>2.0/380</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>2.0</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), S<sub>1.5/490</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>1.5</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mo>+</mo><mn>110</mn><mo> </mo><mi mathvariant="normal">p</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>) and S<sub>2.0/650</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>2.0</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mo>+</mo><mn>270</mn><mo> </mo><mi mathvariant="normal">p</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>) on soil water content (<i>θ</i>), soil temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">l</mi></mrow><mrow><mo>°</mo></mrow></msubsup></mrow></semantics></math></inline-formula>), aboveground biomass, cotton yield and WUE under full irrigation. Cotton yield and irrigation water use efficiency (IWUE) under 10 different irrigation management strategies were analysed for economic benefits. Under the S<sub>1.5/380</sub> and S<sub>2.0/380</sub> scenarios, the average simulated aboveground biomass of cotton (vs. BL<sub>0/380</sub>) declined by 11% and 16%, whereas under S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios it increased by 12% and 30%, respectively. The simulated average seed cotton yield (vs. BL<sub>0/380</sub>) increased by 9.0% and 20.3% under the S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios, but decreased by 10.5% and 15.3% under the S<sub>1.5/380</sub> and S<sub>2.0/380</sub> scenarios, respectively. Owing to greater cotton yield and lesser transpiration, a 9.0% and 24.2% increase (vs. BL<sub>0/380</sub>) in cotton WUE occurred under the S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios, respectively. The highest net income ($3741 ha<sup>−1</sup>) and net water yield ($1.14 m<sup>−3</sup>) of cotton under climate change occurred when irrigated at 650 mm and 500 mm per growing season, respectively. These results suggested that deficit irrigation can be adopted in irrigated cotton fields to address the agricultural water crisis expected under climate change.
first_indexed 2024-03-10T21:30:11Z
format Article
id doaj.art-3fea9bd6e99a4be48a5ccb6f73f0b9d8
institution Directory Open Access Journal
issn 2073-4395
language English
last_indexed 2024-03-10T21:30:11Z
publishDate 2023-09-01
publisher MDPI AG
record_format Article
series Agronomy
spelling doaj.art-3fea9bd6e99a4be48a5ccb6f73f0b9d82023-11-19T15:21:28ZengMDPI AGAgronomy2073-43952023-09-011310252910.3390/agronomy13102529RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid AreasXiaoping Chen0Haibo Dong1Shaoyuan Feng2Dongwei Gui3Liwang Ma4Kelly R. Thorp5Hao Wu6Bo Liu7Zhiming Qi8College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, ChinaCollege of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, ChinaCollege of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, ChinaCele National Station of Observation and Research for Desert Grassland Ecosystem in Xinjiang, Cele 848300, ChinaUSDA-ARS, Rangeland Resources and Systems Research Unit, Fort Collins, CO 80526, USAUSDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USACollege of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, ChinaCollege of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, ChinaDepartment of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, CanadaImproving cotton (<i>Gossypium hirsutum</i> L.) yield and water use efficiency (WUE) under future climate scenarios by optimizing irrigation regimes is crucial in hyper-arid areas. Assuming a current baseline atmospheric carbon dioxide concentration (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub></mrow></semantics></math></inline-formula>) of 380 ppm (baseline, BL<sub>0/380</sub>), the Root Zone Water Quality Model (RZWQM2) was used to evaluate the effects of four climate change scenarios—S<sub>1.5/380</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>1.5</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), S<sub>2.0/380</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>2.0</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>), S<sub>1.5/490</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>1.5</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mo>+</mo><mn>110</mn><mo> </mo><mi mathvariant="normal">p</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>) and S<sub>2.0/650</sub> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∆</mo><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi></mrow><mrow><mo>°</mo></mrow></msubsup><mo>=</mo><mn>2.0</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi><mo>,</mo><mo>∆</mo><msub><mrow><mfenced open="[" close="]" separators="|"><mrow><msub><mrow><mi mathvariant="normal">C</mi><mi mathvariant="normal">O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></mrow><mrow><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">m</mi></mrow></msub><mo>=</mo><mo>+</mo><mn>270</mn><mo> </mo><mi mathvariant="normal">p</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">m</mi></mrow></semantics></math></inline-formula>) on soil water content (<i>θ</i>), soil temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">s</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">l</mi></mrow><mrow><mo>°</mo></mrow></msubsup></mrow></semantics></math></inline-formula>), aboveground biomass, cotton yield and WUE under full irrigation. Cotton yield and irrigation water use efficiency (IWUE) under 10 different irrigation management strategies were analysed for economic benefits. Under the S<sub>1.5/380</sub> and S<sub>2.0/380</sub> scenarios, the average simulated aboveground biomass of cotton (vs. BL<sub>0/380</sub>) declined by 11% and 16%, whereas under S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios it increased by 12% and 30%, respectively. The simulated average seed cotton yield (vs. BL<sub>0/380</sub>) increased by 9.0% and 20.3% under the S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios, but decreased by 10.5% and 15.3% under the S<sub>1.5/380</sub> and S<sub>2.0/380</sub> scenarios, respectively. Owing to greater cotton yield and lesser transpiration, a 9.0% and 24.2% increase (vs. BL<sub>0/380</sub>) in cotton WUE occurred under the S<sub>1.5/490</sub> and S<sub>2.0/650</sub> scenarios, respectively. The highest net income ($3741 ha<sup>−1</sup>) and net water yield ($1.14 m<sup>−3</sup>) of cotton under climate change occurred when irrigated at 650 mm and 500 mm per growing season, respectively. These results suggested that deficit irrigation can be adopted in irrigated cotton fields to address the agricultural water crisis expected under climate change.https://www.mdpi.com/2073-4395/13/10/2529global warmingdeficit irrigationcotton yieldwater useRZWQM2
spellingShingle Xiaoping Chen
Haibo Dong
Shaoyuan Feng
Dongwei Gui
Liwang Ma
Kelly R. Thorp
Hao Wu
Bo Liu
Zhiming Qi
RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
Agronomy
global warming
deficit irrigation
cotton yield
water use
RZWQM2
title RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
title_full RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
title_fullStr RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
title_full_unstemmed RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
title_short RZWQM2 Simulated Irrigation Strategies to Mitigate Climate Change Impacts on Cotton Production in Hyper–Arid Areas
title_sort rzwqm2 simulated irrigation strategies to mitigate climate change impacts on cotton production in hyper arid areas
topic global warming
deficit irrigation
cotton yield
water use
RZWQM2
url https://www.mdpi.com/2073-4395/13/10/2529
work_keys_str_mv AT xiaopingchen rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT haibodong rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT shaoyuanfeng rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT dongweigui rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT liwangma rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT kellyrthorp rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT haowu rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT boliu rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas
AT zhimingqi rzwqm2simulatedirrigationstrategiestomitigateclimatechangeimpactsoncottonproductioninhyperaridareas