Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface

A numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the oper...

Full description

Bibliographic Details
Main Authors: Piyu Li, Faisal Z. Duraihem, Aziz Ullah Awan, A. Al-Zubaidi, Nadeem Abbas, Daud Ahmad
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/7/1207
_version_ 1797438239419662336
author Piyu Li
Faisal Z. Duraihem
Aziz Ullah Awan
A. Al-Zubaidi
Nadeem Abbas
Daud Ahmad
author_facet Piyu Li
Faisal Z. Duraihem
Aziz Ullah Awan
A. Al-Zubaidi
Nadeem Abbas
Daud Ahmad
author_sort Piyu Li
collection DOAJ
description A numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the operating numerical approach bvp4c. The impacts of the nanoparticle volume fraction, dimensionless viscosity ratio, stretching ratio parameter, and dimensionless constant on fluid velocity, micropolar angular velocity, fluid temperature, and skin friction coefficient in both <i>x</i>-direction and <i>y</i>-direction are inspected. Graphical outcomes are shown to predict the features of the concerned parameters into the current problem. These results are vital in the future in the branches of technology and industry. The micropolar function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mfenced><mi>η</mi></mfenced></mrow></semantics></math></inline-formula> increases for higher values of the micropolar parameter and nanoparticle concentration. Micropolar function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>η</mi></mfenced></mrow></semantics></math></inline-formula> declines for higher values of the micropolar parameter and nanoparticle concentration. Temperature function is enhanced for higher values of solid nanoparticle concentration. Temperature function declines for higher values of the micropolar parameter. The range of the physical parameters are presented as: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.005</mn><mo><</mo><msub><mi>ϕ</mi><mn>2</mn></msub><mo><</mo><mn>0.09</mn><mo>,</mo><mo> </mo><mi>P</mi><mi>r</mi><mo>=</mo><mn>6.2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo><</mo><mi>K</mi><mo><</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo><</mo><mi>a</mi><mo><</mo><mn>2.0</mn><mo>,</mo><mo> </mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn><mo>,</mo><mo> </mo><mi>and</mi><mo> </mo><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T11:33:23Z
format Article
id doaj.art-3fef90f33d1c4f60bfe5bcf698f2d288
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T11:33:23Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-3fef90f33d1c4f60bfe5bcf698f2d2882023-11-30T23:46:01ZengMDPI AGNanomaterials2079-49912022-04-01127120710.3390/nano12071207Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching SurfacePiyu Li0Faisal Z. Duraihem1Aziz Ullah Awan2A. Al-Zubaidi3Nadeem Abbas4Daud Ahmad5School of Mathematics and Statistics, Xuzhou University of Technology, Xuzhou 221018, ChinaDepartment of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi ArabiaDepartment of Mathematics, University of the Punjab, Lahore 54590, PakistanDepartment of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi ArabiaDepartment of Mathematics, Quaid-I-Azam University Islamabad 44000, PakistanDepartment of Mathematics, University of the Punjab, Lahore 54590, PakistanA numerical investigation of three-dimensional hybrid nanomaterial micropolar fluid flow across an exponentially stretched sheet is performed. Recognized similarity transformations are adopted to convert governing equations from PDEs into the set ODEs. The dimensionless system is settled by the operating numerical approach bvp4c. The impacts of the nanoparticle volume fraction, dimensionless viscosity ratio, stretching ratio parameter, and dimensionless constant on fluid velocity, micropolar angular velocity, fluid temperature, and skin friction coefficient in both <i>x</i>-direction and <i>y</i>-direction are inspected. Graphical outcomes are shown to predict the features of the concerned parameters into the current problem. These results are vital in the future in the branches of technology and industry. The micropolar function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo> </mo><mi>R</mi><mfenced><mi>η</mi></mfenced></mrow></semantics></math></inline-formula> increases for higher values of the micropolar parameter and nanoparticle concentration. Micropolar function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mfenced><mi>η</mi></mfenced></mrow></semantics></math></inline-formula> declines for higher values of the micropolar parameter and nanoparticle concentration. Temperature function is enhanced for higher values of solid nanoparticle concentration. Temperature function declines for higher values of the micropolar parameter. The range of the physical parameters are presented as: <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.005</mn><mo><</mo><msub><mi>ϕ</mi><mn>2</mn></msub><mo><</mo><mn>0.09</mn><mo>,</mo><mo> </mo><mi>P</mi><mi>r</mi><mo>=</mo><mn>6.2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo><</mo><mi>K</mi><mo><</mo><mn>2</mn><mo>,</mo><mo> </mo><mn>0</mn><mo><</mo><mi>a</mi><mo><</mo><mn>2.0</mn><mo>,</mo><mo> </mo><msub><mi>ϕ</mi><mn>1</mn></msub><mo>=</mo><mn>0.1</mn><mo>,</mo><mo> </mo><mi>and</mi><mo> </mo><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mn>1.5</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2079-4991/12/7/1207boundary layer flowmicropolar hybrid nanofluidexponential stretching surfacenumerical technique
spellingShingle Piyu Li
Faisal Z. Duraihem
Aziz Ullah Awan
A. Al-Zubaidi
Nadeem Abbas
Daud Ahmad
Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
Nanomaterials
boundary layer flow
micropolar hybrid nanofluid
exponential stretching surface
numerical technique
title Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
title_full Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
title_fullStr Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
title_full_unstemmed Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
title_short Heat Transfer of Hybrid Nanomaterials Base Maxwell Micropolar Fluid Flow over an Exponentially Stretching Surface
title_sort heat transfer of hybrid nanomaterials base maxwell micropolar fluid flow over an exponentially stretching surface
topic boundary layer flow
micropolar hybrid nanofluid
exponential stretching surface
numerical technique
url https://www.mdpi.com/2079-4991/12/7/1207
work_keys_str_mv AT piyuli heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface
AT faisalzduraihem heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface
AT azizullahawan heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface
AT aalzubaidi heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface
AT nadeemabbas heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface
AT daudahmad heattransferofhybridnanomaterialsbasemaxwellmicropolarfluidflowoveranexponentiallystretchingsurface