Gold Nanoparticles With Special Shapes: Controlled Synthesis, Surface-enhanced Raman Scattering, and The Application in Biodetection

Specially shaped gold nanoparticles have intrigued considerable attention becausethey usually possess high-sensitivity surface-enhanced Raman scattering (SERS) and thusresult in large advantages in trace biodetermination. In this article, starch-capped goldnanoparticles with hexagon and boot shapes...

Full description

Bibliographic Details
Main Authors: Jinghong Li, Zhouping Wang, Jianqiang Hu
Format: Article
Language:English
Published: MDPI AG 2007-12-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/7/12/3299/
Description
Summary:Specially shaped gold nanoparticles have intrigued considerable attention becausethey usually possess high-sensitivity surface-enhanced Raman scattering (SERS) and thusresult in large advantages in trace biodetermination. In this article, starch-capped goldnanoparticles with hexagon and boot shapes were prepared through using a nontoxic andbiologically benign aqueous-phase synthetic route. Shape effects of gold nanoparticles onSERS properties were mainly investigated, and found that different-shaped goldnanoparticles possess different SERS properties. Especially, the boot-shaped nanoparticlescould induce more 100-fold SERS enhancements in sensitivity as compared with those fromgold nanospheres. The extremely strong SERS properties of gold nanoboots have beensuccessfully applied to the detection of avidin. The unique nanoboots with high-sensitivitySERS properties are also expected to find use in many other fields such as biolabel,bioassay, biodiagnosis, and even clinical diagnosis and therapy.
ISSN:1424-8220