Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems

Let $\Omega$ be a bounded domain in $\mathbb{R}^N$; $N>1$ with a smooth boundary or $\Omega=(0,1)$. We study positive solutions to the boundary value problem of the form: \begin{equation*} \begin{aligned} -\Delta_p u - \Delta_q u&=\lambda f(u) &&\mbox{in}~\Omega,\\ u &= 0 &&...

Full description

Bibliographic Details
Main Authors: Ujjal Das, Amila Muthunayake, Ratnasingham Shivaji
Format: Article
Language:English
Published: University of Szeged 2020-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8933
_version_ 1797830499602792448
author Ujjal Das
Amila Muthunayake
Ratnasingham Shivaji
author_facet Ujjal Das
Amila Muthunayake
Ratnasingham Shivaji
author_sort Ujjal Das
collection DOAJ
description Let $\Omega$ be a bounded domain in $\mathbb{R}^N$; $N>1$ with a smooth boundary or $\Omega=(0,1)$. We study positive solutions to the boundary value problem of the form: \begin{equation*} \begin{aligned} -\Delta_p u - \Delta_q u&=\lambda f(u) &&\mbox{in}~\Omega,\\ u &= 0 &&\mbox{on}~\partial\Omega, \end{aligned} \end{equation*} where $q \in [2,p)$, $\lambda$ is a positive parameter, and $f:[0,\infty) \mapsto \mathbb{R}$ is a class of $C^1$, non-decreasing and $p$-sublinear functions at infinity (i.e. $\lim_{t \rightarrow \infty} \frac{f(t)}{t^{p-1}}=0$) that are negative at the origin (semipositone). We discuss the existence of positive solutions for $\lambda\gg1$. Further, when $p=4,q=2$, $\Omega=(0,1)$ and $f(s)=(s+1)^\gamma-2$; $\gamma \in (0,3)$, we provide the exact bifurcation diagram for positive solutions. In particular, we observe two positive solutions for a finite range of $\lambda$ and a unique positive solution for $\lambda\gg1.$
first_indexed 2024-04-09T13:37:06Z
format Article
id doaj.art-400a1f31f1254912aefab4f94eb7bfcf
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:06Z
publishDate 2020-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-400a1f31f1254912aefab4f94eb7bfcf2023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752020-12-012020881710.14232/ejqtde.2020.1.888933Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problemsUjjal Das0Amila Muthunayake1Ratnasingham Shivaji2The Institute of Mathematical Sciences, HBNI, Chennai, IndiaDepartment of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC, U.S.A.Department of Mathematics and Statistics, The University of North Carolina at Greensboro, Greensboro, NC, U.S.A.Let $\Omega$ be a bounded domain in $\mathbb{R}^N$; $N>1$ with a smooth boundary or $\Omega=(0,1)$. We study positive solutions to the boundary value problem of the form: \begin{equation*} \begin{aligned} -\Delta_p u - \Delta_q u&=\lambda f(u) &&\mbox{in}~\Omega,\\ u &= 0 &&\mbox{on}~\partial\Omega, \end{aligned} \end{equation*} where $q \in [2,p)$, $\lambda$ is a positive parameter, and $f:[0,\infty) \mapsto \mathbb{R}$ is a class of $C^1$, non-decreasing and $p$-sublinear functions at infinity (i.e. $\lim_{t \rightarrow \infty} \frac{f(t)}{t^{p-1}}=0$) that are negative at the origin (semipositone). We discuss the existence of positive solutions for $\lambda\gg1$. Further, when $p=4,q=2$, $\Omega=(0,1)$ and $f(s)=(s+1)^\gamma-2$; $\gamma \in (0,3)$, we provide the exact bifurcation diagram for positive solutions. In particular, we observe two positive solutions for a finite range of $\lambda$ and a unique positive solution for $\lambda\gg1.$http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8933$p$–$q$ laplaciansemipositone problemspositive solutions
spellingShingle Ujjal Das
Amila Muthunayake
Ratnasingham Shivaji
Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
Electronic Journal of Qualitative Theory of Differential Equations
$p$–$q$ laplacian
semipositone problems
positive solutions
title Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
title_full Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
title_fullStr Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
title_full_unstemmed Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
title_short Existence results for a class of $p$–$q$ Laplacian semipositone boundary value problems
title_sort existence results for a class of p q laplacian semipositone boundary value problems
topic $p$–$q$ laplacian
semipositone problems
positive solutions
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8933
work_keys_str_mv AT ujjaldas existenceresultsforaclassofpqlaplaciansemipositoneboundaryvalueproblems
AT amilamuthunayake existenceresultsforaclassofpqlaplaciansemipositoneboundaryvalueproblems
AT ratnasinghamshivaji existenceresultsforaclassofpqlaplaciansemipositoneboundaryvalueproblems