ANN-based model to predict groundwater salinity: A case study of West Najaf–Kerbala region

Estimating groundwater salinity is important for the use of groundwater resources for irrigation purposes and provides a suitable guide for the management of groundwater. In this study, the artificial neural networks (ANNs) were adopted to estimate the salinity of groundwater identified by total dis...

Full description

Bibliographic Details
Main Authors: Al-Waeli Luay Kadhim, Sahib Jumana Hadi, Abbas Hiba Ali
Format: Article
Language:English
Published: De Gruyter 2022-03-01
Series:Open Engineering
Subjects:
Online Access:https://doi.org/10.1515/eng-2022-0025
Description
Summary:Estimating groundwater salinity is important for the use of groundwater resources for irrigation purposes and provides a suitable guide for the management of groundwater. In this study, the artificial neural networks (ANNs) were adopted to estimate the salinity of groundwater identified by total dissolved solids (TDS), sodium adsorption ratio (SAR), and sodium (Na+) percent, using electrical conductivity, magnesium (Mg2+), calcium (Ca2+), potassium (K+), and potential of hydrogen (pH) as input elements. Samples of groundwater were brought from 51 wells situated in the plateau of Najaf–Kerbala provinces. The network structure was designed as 6-4-3 and adopted the default scaled conjugate gradient algorithm for training using SPSS V24 software. It was observed that the proposed model with four neurons was exact in estimating the irrigation salinity. It has shown a suitable agreement between experimental and ANN values of irrigation salinity indices for training and testing datasets based on statistical indicators of the relative mean error and determination coefficient R 2 between ANN outputs and experimental data. TDS, SAR, and Na percent predicted output tracked the measured data with an R 2 of 0.96, 0.97, and 0.96 with relative error of 0.038, 0.014, and 0.021, respectively, for testing, and R 2 of 0.95, 0.96, and 0.96 with relative error of 0.053, 0.065, and 0.133, respectively, for training. This is an indication that the designed network was satisfactory. The model could be utilized for new data to predict the groundwater salinity for irrigation purposes at the Najaf–Kerbala plateau in Iraq.
ISSN:2391-5439