Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions

In this paper we initiate the study of boundary value problems for fractional differential equations and inclusions involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>...

Full description

Bibliographic Details
Main Authors: Jessada Tariboon, Ayub Samadi, Sotiris K. Ntouyas
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/3/110
_version_ 1827629401344311296
author Jessada Tariboon
Ayub Samadi
Sotiris K. Ntouyas
author_facet Jessada Tariboon
Ayub Samadi
Sotiris K. Ntouyas
author_sort Jessada Tariboon
collection DOAJ
description In this paper we initiate the study of boundary value problems for fractional differential equations and inclusions involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Hilfer fractional derivative of order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>. In the single-valued case the existence and uniqueness results are established by using classical fixed-point theorems, such as Banach, Krasnoselskiĭ and Leray-Schauder. In the multivalued case we consider both cases, when the right-hand side has convex or non-convex values. In the first case, we apply the Leray–Schauder nonlinear alternative for multivalued maps, and in the second, the Covit–Nadler fixed-point theorem for multivalued contractions. All results are well illustrated by numerical examples.
first_indexed 2024-03-09T13:50:53Z
format Article
id doaj.art-400c52dce7a14852a5973cd80c067dbd
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T13:50:53Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-400c52dce7a14852a5973cd80c067dbd2023-11-30T20:50:01ZengMDPI AGAxioms2075-16802022-03-0111311010.3390/axioms11030110Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and InclusionsJessada Tariboon0Ayub Samadi1Sotiris K. Ntouyas2Intelligent and Nonlinear Dynamic Innovations, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandDepartment of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh, IranDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, GreeceIn this paper we initiate the study of boundary value problems for fractional differential equations and inclusions involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>k</mi><mo>,</mo><mi>ϕ</mi><mo>)</mo></mrow></semantics></math></inline-formula>-Hilfer fractional derivative of order in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></semantics></math></inline-formula>. In the single-valued case the existence and uniqueness results are established by using classical fixed-point theorems, such as Banach, Krasnoselskiĭ and Leray-Schauder. In the multivalued case we consider both cases, when the right-hand side has convex or non-convex values. In the first case, we apply the Leray–Schauder nonlinear alternative for multivalued maps, and in the second, the Covit–Nadler fixed-point theorem for multivalued contractions. All results are well illustrated by numerical examples.https://www.mdpi.com/2075-1680/11/3/110(<i>k</i>, <i>ϕ</i>)-Hilfer fractional derivativeRiemann-Liouville fractional derivativeCaputo fractional derivativeexistenceuniquenessfixed point theorems
spellingShingle Jessada Tariboon
Ayub Samadi
Sotiris K. Ntouyas
Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
Axioms
(<i>k</i>, <i>ϕ</i>)-Hilfer fractional derivative
Riemann-Liouville fractional derivative
Caputo fractional derivative
existence
uniqueness
fixed point theorems
title Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
title_full Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
title_fullStr Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
title_full_unstemmed Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
title_short Multi-Point Boundary Value Problems for (<i>k</i>, <i>ϕ</i>)-Hilfer Fractional Differential Equations and Inclusions
title_sort multi point boundary value problems for i k i i ϕ i hilfer fractional differential equations and inclusions
topic (<i>k</i>, <i>ϕ</i>)-Hilfer fractional derivative
Riemann-Liouville fractional derivative
Caputo fractional derivative
existence
uniqueness
fixed point theorems
url https://www.mdpi.com/2075-1680/11/3/110
work_keys_str_mv AT jessadatariboon multipointboundaryvalueproblemsforikiiphihilferfractionaldifferentialequationsandinclusions
AT ayubsamadi multipointboundaryvalueproblemsforikiiphihilferfractionaldifferentialequationsandinclusions
AT sotiriskntouyas multipointboundaryvalueproblemsforikiiphihilferfractionaldifferentialequationsandinclusions