Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications

In this article, we introduce anisotropic mixed-norm Herz spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and investigate some basic propertie...

Full description

Bibliographic Details
Main Authors: Zhao Yichun, Zhou Jiang
Format: Article
Language:English
Published: De Gruyter 2023-09-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0599
_version_ 1797693198112391168
author Zhao Yichun
Zhou Jiang
author_facet Zhao Yichun
Zhou Jiang
author_sort Zhao Yichun
collection DOAJ
description In this article, we introduce anisotropic mixed-norm Herz spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and investigate some basic properties of those spaces. Furthermore, we establish the Rubio de Francia extrapolation theory, which resolves the boundedness problems of Calderón-Zygmund operators and fractional integral operator and their commutators, on spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}). Especially, the Littlewood-Paley characterizations of anisotropic mixed-norm Herz spaces are also gained. As the generalization of anisotropic mixed-norm Herz spaces, we introduce anisotropic mixed-norm Herz-Hardy spaces HK˙q→,a→α,p(Rn)H{\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and HKq→,a→α,p(Rn)H{K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}), on which atomic decomposition and molecular decomposition are obtained. Moreover, we gain the boundedness of classical Calderón-Zygmund operators.
first_indexed 2024-03-12T02:40:06Z
format Article
id doaj.art-402ba6769c0d47b78b6a7ebba655aaab
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-03-12T02:40:06Z
publishDate 2023-09-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-402ba6769c0d47b78b6a7ebba655aaab2023-09-04T07:10:00ZengDe GruyterOpen Mathematics2391-54552023-09-0121113210.1515/math-2022-0599Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applicationsZhao Yichun0Zhou Jiang1College of Mathematics and System Science, Xinjiang University, Urumqi, 830046, P.R. ChinaCollege of Mathematics and System Science, Xinjiang University, Urumqi, 830046, P.R. ChinaIn this article, we introduce anisotropic mixed-norm Herz spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and investigate some basic properties of those spaces. Furthermore, we establish the Rubio de Francia extrapolation theory, which resolves the boundedness problems of Calderón-Zygmund operators and fractional integral operator and their commutators, on spaces K˙q→,a→α,p(Rn){\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and Kq→,a→α,p(Rn){K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}). Especially, the Littlewood-Paley characterizations of anisotropic mixed-norm Herz spaces are also gained. As the generalization of anisotropic mixed-norm Herz spaces, we introduce anisotropic mixed-norm Herz-Hardy spaces HK˙q→,a→α,p(Rn)H{\dot{K}}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}) and HKq→,a→α,p(Rn)H{K}_{\overrightarrow{q},\overrightarrow{a}}^{\alpha ,p}\left({{\mathbb{R}}}^{n}), on which atomic decomposition and molecular decomposition are obtained. Moreover, we gain the boundedness of classical Calderón-Zygmund operators.https://doi.org/10.1515/math-2022-0599anisotropicmixed-normherz spaceherz-hardy spaceshardy-littlewood maximal operator42b3542b2542b20
spellingShingle Zhao Yichun
Zhou Jiang
Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
Open Mathematics
anisotropic
mixed-norm
herz space
herz-hardy spaces
hardy-littlewood maximal operator
42b35
42b25
42b20
title Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
title_full Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
title_fullStr Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
title_full_unstemmed Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
title_short Hardy spaces associated with some anisotropic mixed-norm Herz spaces and their applications
title_sort hardy spaces associated with some anisotropic mixed norm herz spaces and their applications
topic anisotropic
mixed-norm
herz space
herz-hardy spaces
hardy-littlewood maximal operator
42b35
42b25
42b20
url https://doi.org/10.1515/math-2022-0599
work_keys_str_mv AT zhaoyichun hardyspacesassociatedwithsomeanisotropicmixednormherzspacesandtheirapplications
AT zhoujiang hardyspacesassociatedwithsomeanisotropicmixednormherzspacesandtheirapplications