NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors

Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder were fabricated and their gas sensing properties toward NO2 or NO (0.5–5 ppm in air) were investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on exposure to NO2 and NO. On the other hand, the re...

Full description

Bibliographic Details
Main Authors: Woosuck Shin, Noriya Izu, Takafumi Akamatsu, Toshio Itoh
Format: Article
Language:English
Published: MDPI AG 2013-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/13/9/12467
Description
Summary:Semiconductor-based gas sensors that use n-type WO3 or p-type Co3O4 powder were fabricated and their gas sensing properties toward NO2 or NO (0.5–5 ppm in air) were investigated at 100 °C or 200 °C. The resistance of the WO3-based sensor increased on exposure to NO2 and NO. On the other hand, the resistance of the Co3O4-based sensor varied depending on the operating temperature and the gas species. The chemical states of the surface of WO3 or those of the Co3O4 powder on exposure to 1 ppm NO2 and NO were investigated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. No clear differences between the chemical states of the metal oxide surface exposed to NO2 or NO could be detected from the DRIFT spectra.
ISSN:1424-8220