Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil

We simulate the impact of school reopening during the COVID-19 pandemic in three major urban centers in Brazil to identify the epidemiological indicators and the best timing for the return of in-school activities and the effect of contact tracing as a mitigation measure. Our goal is to offer guideli...

Full description

Bibliographic Details
Main Authors: Marcelo Eduardo Borges, Leonardo Souto Ferreira, Silas Poloni, Angela Maria Bagattini, Caroline Franco, Michelle Quarti Machado da Rosa, Lorena Mendes Simon, Suzi Alves Camey, Ricardo de Souza Kuchenbecker, Paulo Inácio Prado, José Alexandre Felizola Diniz-Filho, Roberto André Kraenkel, Renato Mendes Coutinho, Cristiana Maria Toscano
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Global Epidemiology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590113322000244
_version_ 1798006380576112640
author Marcelo Eduardo Borges
Leonardo Souto Ferreira
Silas Poloni
Angela Maria Bagattini
Caroline Franco
Michelle Quarti Machado da Rosa
Lorena Mendes Simon
Suzi Alves Camey
Ricardo de Souza Kuchenbecker
Paulo Inácio Prado
José Alexandre Felizola Diniz-Filho
Roberto André Kraenkel
Renato Mendes Coutinho
Cristiana Maria Toscano
author_facet Marcelo Eduardo Borges
Leonardo Souto Ferreira
Silas Poloni
Angela Maria Bagattini
Caroline Franco
Michelle Quarti Machado da Rosa
Lorena Mendes Simon
Suzi Alves Camey
Ricardo de Souza Kuchenbecker
Paulo Inácio Prado
José Alexandre Felizola Diniz-Filho
Roberto André Kraenkel
Renato Mendes Coutinho
Cristiana Maria Toscano
author_sort Marcelo Eduardo Borges
collection DOAJ
description We simulate the impact of school reopening during the COVID-19 pandemic in three major urban centers in Brazil to identify the epidemiological indicators and the best timing for the return of in-school activities and the effect of contact tracing as a mitigation measure. Our goal is to offer guidelines for evidence-based policymaking. We implement an extended SEIR model stratified by age and considering contact networks in different settings – school, home, work, and community, in which the infection transmission rate is affected by various intervention measures. After fitting epidemiological and demographic data, we simulate scenarios with increasing school transmission due to school reopening, and also estimate the number of hospitalization and deaths averted by the implementation of contact tracing. Reopening schools results in a non-linear increase in reported COVID-19 cases and deaths, which is highly dependent on infection and disease incidence at the time of reopening. When contact tracing and quarantining are restricted to school and home settings, a large number of daily tests is required to produce significant effects in reducing the total number of hospitalizations and deaths. Policymakers should carefully consider the epidemiological context and timing regarding the implementation of school closure and return of in-person school activities. While contact tracing strategies prevent new infections within school environments, they alone are not sufficient to avoid significant impacts on community transmission.
first_indexed 2024-04-11T12:54:58Z
format Article
id doaj.art-403aeaa92fc74543a006e658042749db
institution Directory Open Access Journal
issn 2590-1133
language English
last_indexed 2024-04-11T12:54:58Z
publishDate 2022-12-01
publisher Elsevier
record_format Article
series Global Epidemiology
spelling doaj.art-403aeaa92fc74543a006e658042749db2022-12-22T04:23:06ZengElsevierGlobal Epidemiology2590-11332022-12-014100094Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in BrazilMarcelo Eduardo Borges0Leonardo Souto Ferreira1Silas Poloni2Angela Maria Bagattini3Caroline Franco4Michelle Quarti Machado da Rosa5Lorena Mendes Simon6Suzi Alves Camey7Ricardo de Souza Kuchenbecker8Paulo Inácio Prado9José Alexandre Felizola Diniz-Filho10Roberto André Kraenkel11Renato Mendes Coutinho12Cristiana Maria Toscano13Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rua 235, s/n.°, Setor Leste Universitário, Goiânia, Goiás 74605-050, Brazil; Corresponding author.Instituto de Física Teórica - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, Várzea da Barra Funda, São Paulo, SP 01140-070, BrazilInstituto de Física Teórica - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, Várzea da Barra Funda, São Paulo, SP 01140-070, BrazilUniversidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rua 235, s/n.°, Setor Leste Universitário, Goiânia, Goiás 74605-050, BrazilInstituto de Física Teórica - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, Várzea da Barra Funda, São Paulo, SP 01140-070, Brazil; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7LF Oxford, UKUniversidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rua 235, s/n.°, Setor Leste Universitário, Goiânia, Goiás 74605-050, BrazilDepartamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CP 131, Goiânia, Goiás 74001, BrazilUniversidade Federal do Rio Grande do Sul, Instituto de Matemática e Estatística, Departamento de Estatística, Avenida Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS 91501-970, BrazilUniversidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Epidemiologia, Faculdade de Medicina, Campus Saúde, Rua Ramiro Barcelos, 2400, 2° andar, Floresta, Porto Alegre, RS 90035003, BrazilInstituto de Biociências - Universidade de São Paulo, A101, Tv. 14, Butantã, São Paulo, SP 05508-090, BrazilDepartamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, CP 131, Goiânia, Goiás 74001, BrazilInstituto de Física Teórica - Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271, Várzea da Barra Funda, São Paulo, SP 01140-070, BrazilCentro de Matemática, Computação e Cognição - Universidade Federal do ABC, Avenida dos Estados, 5001, Santa Terezinha, Santo André, SP 09210-580, BrazilUniversidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rua 235, s/n.°, Setor Leste Universitário, Goiânia, Goiás 74605-050, BrazilWe simulate the impact of school reopening during the COVID-19 pandemic in three major urban centers in Brazil to identify the epidemiological indicators and the best timing for the return of in-school activities and the effect of contact tracing as a mitigation measure. Our goal is to offer guidelines for evidence-based policymaking. We implement an extended SEIR model stratified by age and considering contact networks in different settings – school, home, work, and community, in which the infection transmission rate is affected by various intervention measures. After fitting epidemiological and demographic data, we simulate scenarios with increasing school transmission due to school reopening, and also estimate the number of hospitalization and deaths averted by the implementation of contact tracing. Reopening schools results in a non-linear increase in reported COVID-19 cases and deaths, which is highly dependent on infection and disease incidence at the time of reopening. When contact tracing and quarantining are restricted to school and home settings, a large number of daily tests is required to produce significant effects in reducing the total number of hospitalizations and deaths. Policymakers should carefully consider the epidemiological context and timing regarding the implementation of school closure and return of in-person school activities. While contact tracing strategies prevent new infections within school environments, they alone are not sufficient to avoid significant impacts on community transmission.http://www.sciencedirect.com/science/article/pii/S2590113322000244Decision support techniquesCOVID-19BrazilSchoolsNon-pharmaceutical interventionsDynamic transmission models
spellingShingle Marcelo Eduardo Borges
Leonardo Souto Ferreira
Silas Poloni
Angela Maria Bagattini
Caroline Franco
Michelle Quarti Machado da Rosa
Lorena Mendes Simon
Suzi Alves Camey
Ricardo de Souza Kuchenbecker
Paulo Inácio Prado
José Alexandre Felizola Diniz-Filho
Roberto André Kraenkel
Renato Mendes Coutinho
Cristiana Maria Toscano
Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
Global Epidemiology
Decision support techniques
COVID-19
Brazil
Schools
Non-pharmaceutical interventions
Dynamic transmission models
title Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
title_full Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
title_fullStr Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
title_full_unstemmed Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
title_short Modelling the impact of school reopening and contact tracing strategies on Covid-19 dynamics in different epidemiologic settings in Brazil
title_sort modelling the impact of school reopening and contact tracing strategies on covid 19 dynamics in different epidemiologic settings in brazil
topic Decision support techniques
COVID-19
Brazil
Schools
Non-pharmaceutical interventions
Dynamic transmission models
url http://www.sciencedirect.com/science/article/pii/S2590113322000244
work_keys_str_mv AT marceloeduardoborges modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT leonardosoutoferreira modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT silaspoloni modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT angelamariabagattini modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT carolinefranco modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT michellequartimachadodarosa modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT lorenamendessimon modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT suzialvescamey modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT ricardodesouzakuchenbecker modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT pauloinacioprado modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT josealexandrefelizoladinizfilho modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT robertoandrekraenkel modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT renatomendescoutinho modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil
AT cristianamariatoscano modellingtheimpactofschoolreopeningandcontacttracingstrategiesoncovid19dynamicsindifferentepidemiologicsettingsinbrazil