Machine learning‐directed electrical impedance tomography to predict metabolically vulnerable plaques

Abstract The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low‐density lipoprotein (oxLDL), a marker of plaque vulne...

Full description

Bibliographic Details
Main Authors: Justin Chen, Shaolei Wang, Kaidong Wang, Parinaz Abiri, Zi‐Yu Huang, Junyi Yin, Alejandro M. Jabalera, Brian Arianpour, Mehrdad Roustaei, Enbo Zhu, Peng Zhao, Susana Cavallero, Sandra Duarte‐Vogel, Elena Stark, Yuan Luo, Peyman Benharash, Yu‐Chong Tai, Qingyu Cui, Tzung K. Hsiai
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Bioengineering & Translational Medicine
Subjects:
Online Access:https://doi.org/10.1002/btm2.10616