Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curve <i>P</i> of the virus. Together with the function of the newly infected individuals <i>I</i>, this model allows us to predict the evolution of the resulting epidemi...

Full description

Bibliographic Details
Main Authors: Jose M. Calabuig, Luis M. García-Raffi, Albert García-Valiente, Enrique A. Sánchez-Pérez
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/8/1260
_version_ 1797560598412656640
author Jose M. Calabuig
Luis M. García-Raffi
Albert García-Valiente
Enrique A. Sánchez-Pérez
author_facet Jose M. Calabuig
Luis M. García-Raffi
Albert García-Valiente
Enrique A. Sánchez-Pérez
author_sort Jose M. Calabuig
collection DOAJ
description We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curve <i>P</i> of the virus. Together with the function of the newly infected individuals <i>I</i>, this model allows us to predict the evolution of the resulting epidemic process in terms of the number <i>E</i> of the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation of <i>E</i> as the convolution of <i>I</i> and <i>P</i>. It allows introducing information about latent patients—patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation of <i>P</i> using real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.
first_indexed 2024-03-10T18:02:00Z
format Article
id doaj.art-404d5affbf09433cb0cfb05a858202a4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T18:02:00Z
publishDate 2020-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-404d5affbf09433cb0cfb05a858202a42023-11-20T08:45:57ZengMDPI AGMathematics2227-73902020-08-0188126010.3390/math8081260Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve DeterminationJose M. Calabuig0Luis M. García-Raffi1Albert García-Valiente2Enrique A. Sánchez-Pérez3Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, SpainUniversitat de València, Doctor Moliner, 10, 46100 Burjassot (València), SpainInstituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, SpainWe show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curve <i>P</i> of the virus. Together with the function of the newly infected individuals <i>I</i>, this model allows us to predict the evolution of the resulting epidemic process in terms of the number <i>E</i> of the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation of <i>E</i> as the convolution of <i>I</i> and <i>P</i>. It allows introducing information about latent patients—patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation of <i>P</i> using real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.https://www.mdpi.com/2227-7390/8/8/1260Kaplan-Meiersurvivalquadraticoptimizationepidemicmodel
spellingShingle Jose M. Calabuig
Luis M. García-Raffi
Albert García-Valiente
Enrique A. Sánchez-Pérez
Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
Mathematics
Kaplan-Meier
survival
quadratic
optimization
epidemic
model
title Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
title_full Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
title_fullStr Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
title_full_unstemmed Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
title_short Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination
title_sort evolution model for epidemic diseases based on the kaplan meier curve determination
topic Kaplan-Meier
survival
quadratic
optimization
epidemic
model
url https://www.mdpi.com/2227-7390/8/8/1260
work_keys_str_mv AT josemcalabuig evolutionmodelforepidemicdiseasesbasedonthekaplanmeiercurvedetermination
AT luismgarciaraffi evolutionmodelforepidemicdiseasesbasedonthekaplanmeiercurvedetermination
AT albertgarciavaliente evolutionmodelforepidemicdiseasesbasedonthekaplanmeiercurvedetermination
AT enriqueasanchezperez evolutionmodelforepidemicdiseasesbasedonthekaplanmeiercurvedetermination