Quantifying Redundant Information in Predicting a Target Random Variable

We consider the problem of defining a measure of redundant information that quantifies how much common information two or more random variables specify about a target random variable. We discussed desired properties of such a measure, and propose new measures with some desirable properties.

Bibliographic Details
Main Authors: Virgil Griffith, Tracey Ho
Format: Article
Language:English
Published: MDPI AG 2015-07-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/7/4644
_version_ 1828146059695620096
author Virgil Griffith
Tracey Ho
author_facet Virgil Griffith
Tracey Ho
author_sort Virgil Griffith
collection DOAJ
description We consider the problem of defining a measure of redundant information that quantifies how much common information two or more random variables specify about a target random variable. We discussed desired properties of such a measure, and propose new measures with some desirable properties.
first_indexed 2024-04-11T20:41:31Z
format Article
id doaj.art-4063583f20eb440d88f933dcdfc62ac7
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T20:41:31Z
publishDate 2015-07-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-4063583f20eb440d88f933dcdfc62ac72022-12-22T04:04:11ZengMDPI AGEntropy1099-43002015-07-011774644465310.3390/e17074644e17074644Quantifying Redundant Information in Predicting a Target Random VariableVirgil Griffith0Tracey Ho1School of Computing, National University of Singapore, Singapore 119077, SingaporeComputer Science and Electrical Engineering, Caltech, Pasadena, CA 91125, USAWe consider the problem of defining a measure of redundant information that quantifies how much common information two or more random variables specify about a target random variable. We discussed desired properties of such a measure, and propose new measures with some desirable properties.http://www.mdpi.com/1099-4300/17/7/4644synergyinformation theorycomplex systemsirreducibilitysynergistic informationintersection-information
spellingShingle Virgil Griffith
Tracey Ho
Quantifying Redundant Information in Predicting a Target Random Variable
Entropy
synergy
information theory
complex systems
irreducibility
synergistic information
intersection-information
title Quantifying Redundant Information in Predicting a Target Random Variable
title_full Quantifying Redundant Information in Predicting a Target Random Variable
title_fullStr Quantifying Redundant Information in Predicting a Target Random Variable
title_full_unstemmed Quantifying Redundant Information in Predicting a Target Random Variable
title_short Quantifying Redundant Information in Predicting a Target Random Variable
title_sort quantifying redundant information in predicting a target random variable
topic synergy
information theory
complex systems
irreducibility
synergistic information
intersection-information
url http://www.mdpi.com/1099-4300/17/7/4644
work_keys_str_mv AT virgilgriffith quantifyingredundantinformationinpredictingatargetrandomvariable
AT traceyho quantifyingredundantinformationinpredictingatargetrandomvariable