A high-power-density design method for polymer gear systems via an adaptive non-dominated sorting genetic algorithm III and surrogate sub-models

There is a growing and prevalent trend in the power transmission field of high-performance polymers replacing metallic materials given the strict light-weight requirement. Polymer gears exhibit a low elasticity modulus, high-temperature sensitivity, and increased geometric design flexibility, presen...

Full description

Bibliographic Details
Main Authors: Zehua Lu, Yiming Chen, Huaiju Liu, Caichao Zhu, Ruo Wu
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S026412752400248X
Description
Summary:There is a growing and prevalent trend in the power transmission field of high-performance polymers replacing metallic materials given the strict light-weight requirement. Polymer gears exhibit a low elasticity modulus, high-temperature sensitivity, and increased geometric design flexibility, presenting technical challenges to the straightforward application of metallic design methods to polymer gear systems. This study is centred on the development of a high-power-density polymer gear transmission system for the accessory unit of a gas turbine engine, utilising an adaptive NSGA-III algorithm and surrogate sub-models. A comprehensive assessment indicator for the operating performance of the transmission system is suggested, encompassing gear strength, bearing temperature, and shaft torsional stiffness. The model made it possible to simultaneously optimise forty-six structural parameters, including gear tooth module, web thickness, and bearing clearance. In contrast to the original steel design scheme, the optimised polymer gear transmission system indicated a 49% reduction in weight and a 1.96-fold increase in power density. This presents a method for substituting steel with polymers for effective power transmission.
ISSN:0264-1275