Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields

We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on <i>d</i>-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one...

Full description

Bibliographic Details
Main Authors: I. L. Buchbinder, A. A. Reshetnyak
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/12/2124
_version_ 1797379279451848704
author I. L. Buchbinder
A. A. Reshetnyak
author_facet I. L. Buchbinder
A. A. Reshetnyak
author_sort I. L. Buchbinder
collection DOAJ
description We develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on <i>d</i>-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and two massless; two massive, both with coinciding and with different masses and one massless field of spins <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mn>1</mn></msub><mo>,</mo><msub><mi>s</mi><mn>2</mn></msub><mo>,</mo><msub><mi>s</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. Unlike the previous results on cubic vertices we extend our earlier result in (Buchbinder, I.L.; et al. <i>Phys. Lett. B</i> 2021, 820, 136470) for massless fields and employ the complete BRST operator, including the trace constraints, which is used to formulate an irreducible representation with definite integer spin. We generalize the cubic vertices proposed for reducible higher spin fields in (Metsaev, R.R. <i>Phys. Lett. B</i> 2013, 720, 237) in the form of multiplicative and non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which contains the additional terms with a smaller number of space-time derivatives. We prove that without traceless conditions for the cubic vertices in (Metsaev, R.R. <i>Phys. Lett. B</i> 2013, 720, 237) it is impossible to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these vertices. As the examples, we explicitly construct the interacting Lagrangians for the massive spin of the <i>s</i> field and the massless scalars, both with and without auxiliary fields. The interacting models with different combinations of triples higher spin fields: massive spin <i>s</i> with massless scalar and vector fields and with two vector fields; massless helicity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> with massless scalar and massive vector fields; two massive fields of spins <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></semantics></math></inline-formula> and massless scalar is also considered.
first_indexed 2024-03-08T20:19:54Z
format Article
id doaj.art-407590ab346f4ebca7cd4b4005c54ae7
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-08T20:19:54Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-407590ab346f4ebca7cd4b4005c54ae72023-12-22T14:45:07ZengMDPI AGSymmetry2073-89942023-11-011512212410.3390/sym15122124Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin FieldsI. L. Buchbinder0A. A. Reshetnyak1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, RussiaBogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, RussiaWe develop the BRST approach to construct the general off-shell local Lorentz covariant cubic interaction vertices for irreducible massless and massive higher spin fields on <i>d</i>-dimensional Minkowski space. We consider two different cases for interacting higher spin fields: with one massive and two massless; two massive, both with coinciding and with different masses and one massless field of spins <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>s</mi><mn>1</mn></msub><mo>,</mo><msub><mi>s</mi><mn>2</mn></msub><mo>,</mo><msub><mi>s</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>. Unlike the previous results on cubic vertices we extend our earlier result in (Buchbinder, I.L.; et al. <i>Phys. Lett. B</i> 2021, 820, 136470) for massless fields and employ the complete BRST operator, including the trace constraints, which is used to formulate an irreducible representation with definite integer spin. We generalize the cubic vertices proposed for reducible higher spin fields in (Metsaev, R.R. <i>Phys. Lett. B</i> 2013, 720, 237) in the form of multiplicative and non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which contains the additional terms with a smaller number of space-time derivatives. We prove that without traceless conditions for the cubic vertices in (Metsaev, R.R. <i>Phys. Lett. B</i> 2013, 720, 237) it is impossible to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these vertices. As the examples, we explicitly construct the interacting Lagrangians for the massive spin of the <i>s</i> field and the massless scalars, both with and without auxiliary fields. The interacting models with different combinations of triples higher spin fields: massive spin <i>s</i> with massless scalar and vector fields and with two vector fields; massless helicity <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> with massless scalar and massive vector fields; two massive fields of spins <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mo>,</mo><mo> </mo><mn>0</mn></mrow></semantics></math></inline-formula> and massless scalar is also considered.https://www.mdpi.com/2073-8994/15/12/2124higher spin field theorymultidimensional Minkowski spacesLagrangian formulationBRST operatorgauge invariancecubic interaction vertices
spellingShingle I. L. Buchbinder
A. A. Reshetnyak
Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
Symmetry
higher spin field theory
multidimensional Minkowski spaces
Lagrangian formulation
BRST operator
gauge invariance
cubic interaction vertices
title Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
title_full Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
title_fullStr Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
title_full_unstemmed Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
title_short Covariant Cubic Interacting Vertices for Massless and Massive Integer Higher Spin Fields
title_sort covariant cubic interacting vertices for massless and massive integer higher spin fields
topic higher spin field theory
multidimensional Minkowski spaces
Lagrangian formulation
BRST operator
gauge invariance
cubic interaction vertices
url https://www.mdpi.com/2073-8994/15/12/2124
work_keys_str_mv AT ilbuchbinder covariantcubicinteractingverticesformasslessandmassiveintegerhigherspinfields
AT aareshetnyak covariantcubicinteractingverticesformasslessandmassiveintegerhigherspinfields