A Study of Count Regression Models for Mortality Rate

This paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion...

Full description

Bibliographic Details
Main Author: Anwar Fitrianto
Format: Article
Language:English
Published: Mathematics Department UIN Maulana Malik Ibrahim Malang 2021-11-01
Series:Cauchy: Jurnal Matematika Murni dan Aplikasi
Subjects:
Online Access:https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13642
Description
Summary:This paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to find out which method suits the data the most. The results show that the data indeed display higher variability. Among the three models, the model preferred is NEGBIN 1 model.
ISSN:2086-0382
2477-3344