A Study of Count Regression Models for Mortality Rate

This paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion...

Full description

Bibliographic Details
Main Author: Anwar Fitrianto
Format: Article
Language:English
Published: Mathematics Department UIN Maulana Malik Ibrahim Malang 2021-11-01
Series:Cauchy: Jurnal Matematika Murni dan Aplikasi
Subjects:
Online Access:https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13642
_version_ 1818200567522000896
author Anwar Fitrianto
author_facet Anwar Fitrianto
author_sort Anwar Fitrianto
collection DOAJ
description This paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to find out which method suits the data the most. The results show that the data indeed display higher variability. Among the three models, the model preferred is NEGBIN 1 model.
first_indexed 2024-12-12T02:39:43Z
format Article
id doaj.art-407e80ce451b452691ca26af31bc20ca
institution Directory Open Access Journal
issn 2086-0382
2477-3344
language English
last_indexed 2024-12-12T02:39:43Z
publishDate 2021-11-01
publisher Mathematics Department UIN Maulana Malik Ibrahim Malang
record_format Article
series Cauchy: Jurnal Matematika Murni dan Aplikasi
spelling doaj.art-407e80ce451b452691ca26af31bc20ca2022-12-22T00:41:11ZengMathematics Department UIN Maulana Malik Ibrahim MalangCauchy: Jurnal Matematika Murni dan Aplikasi2086-03822477-33442021-11-017114215110.18860/ca.v7i1.136425880A Study of Count Regression Models for Mortality RateAnwar Fitrianto0Department of Statistics, IPB UniversityThis paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to find out which method suits the data the most. The results show that the data indeed display higher variability. Among the three models, the model preferred is NEGBIN 1 model.https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13642mortality, poisson, regression, binomial, overdispersion
spellingShingle Anwar Fitrianto
A Study of Count Regression Models for Mortality Rate
Cauchy: Jurnal Matematika Murni dan Aplikasi
mortality, poisson, regression, binomial, overdispersion
title A Study of Count Regression Models for Mortality Rate
title_full A Study of Count Regression Models for Mortality Rate
title_fullStr A Study of Count Regression Models for Mortality Rate
title_full_unstemmed A Study of Count Regression Models for Mortality Rate
title_short A Study of Count Regression Models for Mortality Rate
title_sort study of count regression models for mortality rate
topic mortality, poisson, regression, binomial, overdispersion
url https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13642
work_keys_str_mv AT anwarfitrianto astudyofcountregressionmodelsformortalityrate
AT anwarfitrianto studyofcountregressionmodelsformortalityrate