A Study of Count Regression Models for Mortality Rate
This paper discusses how overdispersed count data to be fit. Poisson regression model, Negative Binomial 1 regression model (NEGBIN 1) and Negative Binomial regression 2 (NEGBIN 2) model were proposed to fit mortality rate data. The method used is comparing the values of Akaike Information Criterion...
Main Author: | Anwar Fitrianto |
---|---|
Format: | Article |
Language: | English |
Published: |
Mathematics Department UIN Maulana Malik Ibrahim Malang
2021-11-01
|
Series: | Cauchy: Jurnal Matematika Murni dan Aplikasi |
Subjects: | |
Online Access: | https://ejournal.uin-malang.ac.id/index.php/Math/article/view/13642 |
Similar Items
-
Re-sampling Techniques in Count Data Regression Models
by: Zakariya Y. Algamal
Published: (2012-12-01) -
PENERAPAN REGRESI BINOMIAL NEGATIF UNTUK MENGATASI OVERDISPERSI PADA REGRESI POISSON
by: PUTU SUSAN PRADAWATI, et al.
Published: (2013-09-01) -
Perbandingan Regresi Binomial Negatif dan Regresi Conway-Maxwell-Poisson dalam Mengatasi Overdispersi pada Regresi Poisson
by: Lusi Eka Afri
Published: (2017-03-01) -
A New Computational Algorithm for Assessing Overdispersion and Zero-Inflation in Machine Learning Count Models with Python
by: Luiz Paulo Lopes Fávero, et al.
Published: (2024-03-01) -
PENERAPAN REGRESI GENERALIZED POISSON UNTUK MENGATASI FENOMENA OVERDISPERSI PADA KASUS REGRESI POISSON
by: I PUTU YUDANTA EKA PUTRA, et al.
Published: (2013-05-01)