Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals

Lithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a...

Full description

Bibliographic Details
Main Authors: Bingtao Tian, Xiaodong Wang, Yanyan Niu, Jinlong Zhang, Qinghua Zhang, Zhihua Zhang, Guangming Wu, Bin Zhou, Jun Shen
Format: Article
Language:English
Published: AIP Publishing LLC 2016-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4947135
_version_ 1818009518034911232
author Bingtao Tian
Xiaodong Wang
Yanyan Niu
Jinlong Zhang
Qinghua Zhang
Zhihua Zhang
Guangming Wu
Bin Zhou
Jun Shen
author_facet Bingtao Tian
Xiaodong Wang
Yanyan Niu
Jinlong Zhang
Qinghua Zhang
Zhihua Zhang
Guangming Wu
Bin Zhou
Jun Shen
author_sort Bingtao Tian
collection DOAJ
description Lithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol–gel SiO2 coatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young’s modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO2 coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.
first_indexed 2024-04-14T05:43:45Z
format Article
id doaj.art-4085b65bcf6e4ad0a2dbfee29e270c0c
institution Directory Open Access Journal
issn 2158-3226
language English
last_indexed 2024-04-14T05:43:45Z
publishDate 2016-04-01
publisher AIP Publishing LLC
record_format Article
series AIP Advances
spelling doaj.art-4085b65bcf6e4ad0a2dbfee29e270c0c2022-12-22T02:09:21ZengAIP Publishing LLCAIP Advances2158-32262016-04-0164045208045208-1010.1063/1.4947135034604ADVPreparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystalsBingtao Tian0Xiaodong Wang1Yanyan Niu2Jinlong Zhang3Qinghua Zhang4Zhihua Zhang5Guangming Wu6Bin Zhou7Jun Shen8Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaSchool of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. ChinaChengdu Fine Optical Engineering Research Center, Chengdu, 610041, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. ChinaLithium triborate (LiB3O5, LBO) crystal is now one of the most useful nonlinear optical materials for frequency conversion of high power lasers. The use of the crystal, however, has been hampered by the unavailability of antireflective (AR) coatings with high laser damage resistance. In this work, a “point contact” dip-coating method is developed to prepare sol–gel SiO2 AR coatings on small-size LBO crystals. Using this approach, we obtain a homogenous coating surface on an 8 mm×8 mm×3 mm LBO crystal. The stress measurements show that the stresses in sol–gel SiO2 coatings vary with the time of natural drying, which is beyond our expectation. The anisotropic Young’s modulus of the LBO crystal and the different evolution tendency of the stress in the different SiO2 coating layers are found to be responsible for the crack of the double-layer AR coatings on anisotropic LBO crystal. Meanwhile, the resulting coatings on LBO crystal achieve a LIDT of over 15 J/cm2 (532 nm, 3ns) and the coated LBO is expected to have a transmittance of over 99% at 800 nm.http://dx.doi.org/10.1063/1.4947135
spellingShingle Bingtao Tian
Xiaodong Wang
Yanyan Niu
Jinlong Zhang
Qinghua Zhang
Zhihua Zhang
Guangming Wu
Bin Zhou
Jun Shen
Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
AIP Advances
title Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
title_full Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
title_fullStr Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
title_full_unstemmed Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
title_short Preparation and stress evolution of sol–gel SiO2 antireflective coatings for small-size anisotropic lithium triborate crystals
title_sort preparation and stress evolution of sol gel sio2 antireflective coatings for small size anisotropic lithium triborate crystals
url http://dx.doi.org/10.1063/1.4947135
work_keys_str_mv AT bingtaotian preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT xiaodongwang preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT yanyanniu preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT jinlongzhang preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT qinghuazhang preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT zhihuazhang preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT guangmingwu preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT binzhou preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals
AT junshen preparationandstressevolutionofsolgelsio2antireflectivecoatingsforsmallsizeanisotropiclithiumtriboratecrystals