Porphyrin as a Cryoprotectant for Graphene Oxide-Coated Gold Nanorods to Produce Conjugated Product with Improved Stability and Opto-Phototherapeutic Properties

Graphene oxide (GO) as a coating material for gold nanorods (AuNRs) has gained interest in reducing toxicity and improving the photothermal profiling of AuNRs. However, there is still a challenge regarding the storage of colloidal suspensions of GO-coated AuNRs (GO@AuNRs). Hence, the conjugation of...

Full description

Bibliographic Details
Main Authors: Thabang Calvin Lebepe, Rodney Maluleke, Nande Mgedle, Oluwatobi Samuel Oluwafemi
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Pharmaceutics
Subjects:
Online Access:https://www.mdpi.com/1999-4923/15/11/2538
Description
Summary:Graphene oxide (GO) as a coating material for gold nanorods (AuNRs) has gained interest in reducing toxicity and improving the photothermal profiling of AuNRs. However, there is still a challenge regarding the storage of colloidal suspensions of GO-coated AuNRs (GO@AuNRs). Hence, the conjugation of GO@AuNRs to meso-tetra-(4-sulfonatophenyl)porphyrin (TPPS<sub>4</sub>), an anionic water-soluble porphyrin, has been reported to enhance their re-dispensability and improve their phototherapeutic properties. The AuNRs and GO were synthesised using seed-mediated and Hummers’ methods, respectively. The GO@AuNRs were conjugated to TPPS<sub>4</sub> and characterised using ultraviolet–visible–near-infrared (UV-Vis-NIR) spectroscopy, zeta analyser, dynamic light scattering (DLS), photoluminescence spectroscopy (PL), x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier-transform infrared spectroscopy (FTIR) before freeze-drying. The results showed that the AuNRs were sandwiched between GO and TPPS<sub>4</sub>. After freeze-drying, the freeze-dried conjugate was dispensed in deionised water without adding cryoprotectants and its properties were compared to those of the unfreeze-dried conjugate. The results showed that the freeze-dried conjugate contained similar optical properties to the unfreeze-dried conjugate. However, the bare GO@AuNRs showed a change in the optical properties after freeze-drying. These results revealed that porphyrin is an excellent additive to reduce the freeze-drying stress tolerance of GO@AuNRs. The freeze-dried conjugate also showed both singlet oxygen and photothermal properties of GO@AuNRs and porphyrin. These results indicated that the freeze-dried conjugate is a promising dual photodynamic and photothermal agent, and porphyrin can act as a cryoprotectant.
ISSN:1999-4923