Isomeric ratio measurements with the ILL LOHENGRIN spectrometer

The modelling of γ heating and neutron damage inside a nuclear reactor is essential to design the next generation of nuclear reactors. The determination of the fission fragment momentum is a key element to perform accurate calculations of the γ heating. One way to assess this information is to look...

Full description

Bibliographic Details
Main Authors: Chebboubi A., Kessedjian G., Litaize O., Serot O., Faust H., Bernard D., Blanc A., Köster U., Méplan O., Mutti P., Sage C.
Format: Article
Language:English
Published: EDP Sciences 2016-01-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/201611108003
Description
Summary:The modelling of γ heating and neutron damage inside a nuclear reactor is essential to design the next generation of nuclear reactors. The determination of the fission fragment momentum is a key element to perform accurate calculations of the γ heating. One way to assess this information is to look at the isomeric ratio of different nuclei. According to the lifetime of the isomeric state, different experimental techniques were developed at the LOHENGRIN spectrometer. A focus on the measurement of isomeric ratios of 136I in neutron induced fission of 241Pu is presented. A discussion with the current assumptions used in the evaluation process for isomeric ratio is also shown.
ISSN:2100-014X