Impact of stirring time and the corresponding growth mechanism in the solvothermal synthesis of WO3 nanostructures

WO3 nanostructures with different morphologies and dimensions were fabricated via solvothermal synthesis by adjusting the stirring time of the precursor solution. Ethanol-based solutions of the WCl6 precursor with various colors (dark green, yellow, white, blue, and blue-black) were prepared, and th...

Full description

Bibliographic Details
Main Authors: Changhyun Jin, Jong-Chan Lim, Min Young Kim, Myung Sik Choi, Sang-Il Kim, Seung-Hyub Baek, Sun-Jae Kim, Seung Yong Lee, Hyun-Sik Kim, Kyu Hyoung Lee
Format: Article
Language:English
Published: Taylor & Francis Group 2022-10-01
Series:Journal of Asian Ceramic Societies
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21870764.2022.2129483
Description
Summary:WO3 nanostructures with different morphologies and dimensions were fabricated via solvothermal synthesis by adjusting the stirring time of the precursor solution. Ethanol-based solutions of the WCl6 precursor with various colors (dark green, yellow, white, blue, and blue-black) were prepared, and this triggered a significant change in the growth behavior during the evolution of WO3 nanostructures. Controlling the initial state of the precursors in solution enabled sequential nucleation and growth which resulted in the production of zero-to-three-dimensional nanostructures including nanoparticles, a mixture of nanosheets and nanoparticles, jointed-nanosheets, and three-dimensionally clustered jointed-nanosheets. The crystallographic characteristics (preferred orientation along the (002) plane) and the concentration of surface oxygen vacancies were also controllable, suggesting the formation of nanostructures with tuneable surface reactivity. Differing NO2 sensing performances were observed because of the variation in configurations of the WO3 nanostructures.
ISSN:2187-0764