Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
<p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-04-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf |
_version_ | 1818271556278681600 |
---|---|
author | S. Lim M. Lee J. Savarino P. Laj |
author_facet | S. Lim M. Lee J. Savarino P. Laj |
author_sort | S. Lim |
collection | DOAJ |
description | <p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00001.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00001.png"/></svg:svg></span></span> has
been a great concern in East Asia. It is, therefore, imperative to identify
its sources and oxidation processes, for which nitrogen and oxygen stable
isotopes are powerful tracers. Here, we determined the <span class="inline-formula"><i>δ</i><sup>15</sup></span>N
(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00002.png"/></svg:svg></span></span>) and <span class="inline-formula">Δ<sup>17</sup></span>O (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00003.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00003.png"/></svg:svg></span></span>) of <span class="inline-formula">PM<sub>2.5</sub></span> in
Seoul during the summer of 2018 and the winter of 2018–2019 and estimated
quantitatively the relative contribution of oxidation pathways for
particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="dd23f13eb24280cbe650be4567ce8571"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00004.png"/></svg:svg></span></span> and investigated major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources.
In the range of <span class="inline-formula">PM<sub>2.5</sub></span> mass concentration from 7.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (summer) to 139.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (winter), the mean <span class="inline-formula"><i>δ</i><sup>15</sup></span>N was
<span class="inline-formula">−0.7</span> ‰ <span class="inline-formula">±</span> 3.3 ‰ and <span class="inline-formula">3.8</span> ‰ <span class="inline-formula">±</span> 3.7 ‰, and the mean <span class="inline-formula">Δ<sup>17</sup></span>O was <span class="inline-formula">23.2</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ and <span class="inline-formula">27.7</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ in the
summer and winter, respectively. While OH oxidation was the dominant pathway
for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="54a63b90f99919b7f33388d68cde2f58"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00005.png"/></svg:svg></span></span> during the summer (87 %), nighttime formation via
<span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> and <span class="inline-formula">NO<sub>3</sub></span> was relatively more important (38 %) during
the winter, when aerosol liquid water content (ALWC) and nitrogen oxidation
ratio (NOR) were higher. Interestingly, the highest <span class="inline-formula">Δ<sup>17</sup></span>O was
coupled with the lowest <span class="inline-formula"><i>δ</i><sup>15</sup></span>N and highest NOR during the
record-breaking winter <span class="inline-formula">PM<sub>2.5</sub></span> episodes, revealing the critical role of
photochemical oxidation process in severe winter haze development. For <span class="inline-formula">NO<sub><i>x</i></sub></span> sources, atmospheric <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula">NO<sub><i>x</i></sub></span>) estimated from
measured <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06178b8a1ccf121783e8e34310fe8913"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00006.png"/></svg:svg></span></span>) considering isotope
fractionation effects indicates vehicle emissions as the most important
emission source of <span class="inline-formula">NO<sub><i>x</i></sub></span> in Seoul. The contribution from biogenic soil
and coal combustion was slightly increased in summer and winter,
respectively. Our results built on a multiple-isotope approach provide the
first explicit evidence for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0ed2522f87147883b53f48851745fd62"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00007.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00007.png"/></svg:svg></span></span> formation processes and major
<span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources in the Seoul megacity and suggest an effective
mitigation measure to improve <span class="inline-formula">PM<sub>2.5</sub></span> pollution.</p> |
first_indexed | 2024-12-12T21:28:03Z |
format | Article |
id | doaj.art-40baa5c823d041c5974ad2e347d17fa9 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-12T21:28:03Z |
publishDate | 2022-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-40baa5c823d041c5974ad2e347d17fa92022-12-22T00:11:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-04-01225099511510.5194/acp-22-5099-2022Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurementsS. Lim0M. Lee1J. Savarino2P. Laj3Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South KoreaDepartment of Earth and Environmental Sciences, Korea University, Seoul 02841, South KoreaInstitute of Environmental Geosciences (IGE), Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, FranceInstitute of Environmental Geosciences (IGE), Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France<p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00001.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00001.png"/></svg:svg></span></span> has been a great concern in East Asia. It is, therefore, imperative to identify its sources and oxidation processes, for which nitrogen and oxygen stable isotopes are powerful tracers. Here, we determined the <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00002.png"/></svg:svg></span></span>) and <span class="inline-formula">Δ<sup>17</sup></span>O (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00003.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00003.png"/></svg:svg></span></span>) of <span class="inline-formula">PM<sub>2.5</sub></span> in Seoul during the summer of 2018 and the winter of 2018–2019 and estimated quantitatively the relative contribution of oxidation pathways for particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="dd23f13eb24280cbe650be4567ce8571"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00004.png"/></svg:svg></span></span> and investigated major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources. In the range of <span class="inline-formula">PM<sub>2.5</sub></span> mass concentration from 7.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (summer) to 139.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (winter), the mean <span class="inline-formula"><i>δ</i><sup>15</sup></span>N was <span class="inline-formula">−0.7</span> ‰ <span class="inline-formula">±</span> 3.3 ‰ and <span class="inline-formula">3.8</span> ‰ <span class="inline-formula">±</span> 3.7 ‰, and the mean <span class="inline-formula">Δ<sup>17</sup></span>O was <span class="inline-formula">23.2</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ and <span class="inline-formula">27.7</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ in the summer and winter, respectively. While OH oxidation was the dominant pathway for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="54a63b90f99919b7f33388d68cde2f58"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00005.png"/></svg:svg></span></span> during the summer (87 %), nighttime formation via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> and <span class="inline-formula">NO<sub>3</sub></span> was relatively more important (38 %) during the winter, when aerosol liquid water content (ALWC) and nitrogen oxidation ratio (NOR) were higher. Interestingly, the highest <span class="inline-formula">Δ<sup>17</sup></span>O was coupled with the lowest <span class="inline-formula"><i>δ</i><sup>15</sup></span>N and highest NOR during the record-breaking winter <span class="inline-formula">PM<sub>2.5</sub></span> episodes, revealing the critical role of photochemical oxidation process in severe winter haze development. For <span class="inline-formula">NO<sub><i>x</i></sub></span> sources, atmospheric <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula">NO<sub><i>x</i></sub></span>) estimated from measured <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06178b8a1ccf121783e8e34310fe8913"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00006.png"/></svg:svg></span></span>) considering isotope fractionation effects indicates vehicle emissions as the most important emission source of <span class="inline-formula">NO<sub><i>x</i></sub></span> in Seoul. The contribution from biogenic soil and coal combustion was slightly increased in summer and winter, respectively. Our results built on a multiple-isotope approach provide the first explicit evidence for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0ed2522f87147883b53f48851745fd62"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00007.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00007.png"/></svg:svg></span></span> formation processes and major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources in the Seoul megacity and suggest an effective mitigation measure to improve <span class="inline-formula">PM<sub>2.5</sub></span> pollution.</p>https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf |
spellingShingle | S. Lim M. Lee J. Savarino P. Laj Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements Atmospheric Chemistry and Physics |
title | Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements |
title_full | Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements |
title_fullStr | Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements |
title_full_unstemmed | Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements |
title_short | Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements |
title_sort | oxidation pathways and emission sources of atmospheric particulate nitrate in seoul based on i δ i sup 15 sup n and δ sup 17 sup o measurements |
url | https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf |
work_keys_str_mv | AT slim oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements AT mlee oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements AT jsavarino oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements AT plaj oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements |