Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements

<p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflo...

Full description

Bibliographic Details
Main Authors: S. Lim, M. Lee, J. Savarino, P. Laj
Format: Article
Language:English
Published: Copernicus Publications 2022-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf
_version_ 1818271556278681600
author S. Lim
M. Lee
J. Savarino
P. Laj
author_facet S. Lim
M. Lee
J. Savarino
P. Laj
author_sort S. Lim
collection DOAJ
description <p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00001.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00001.png"/></svg:svg></span></span> has been a great concern in East Asia. It is, therefore, imperative to identify its sources and oxidation processes, for which nitrogen and oxygen stable isotopes are powerful tracers. Here, we determined the <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00002.png"/></svg:svg></span></span>) and <span class="inline-formula">Δ<sup>17</sup></span>O (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00003.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00003.png"/></svg:svg></span></span>) of <span class="inline-formula">PM<sub>2.5</sub></span> in Seoul during the summer of 2018 and the winter of 2018–2019 and estimated quantitatively the relative contribution of oxidation pathways for particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="dd23f13eb24280cbe650be4567ce8571"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00004.png"/></svg:svg></span></span> and investigated major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources. In the range of <span class="inline-formula">PM<sub>2.5</sub></span> mass concentration from 7.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (summer) to 139.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (winter), the mean <span class="inline-formula"><i>δ</i><sup>15</sup></span>N was <span class="inline-formula">−0.7</span> ‰ <span class="inline-formula">±</span> 3.3 ‰ and <span class="inline-formula">3.8</span> ‰ <span class="inline-formula">±</span> 3.7 ‰, and the mean <span class="inline-formula">Δ<sup>17</sup></span>O was <span class="inline-formula">23.2</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ and <span class="inline-formula">27.7</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ in the summer and winter, respectively. While OH oxidation was the dominant pathway for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="54a63b90f99919b7f33388d68cde2f58"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00005.png"/></svg:svg></span></span> during the summer (87 %), nighttime formation via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> and <span class="inline-formula">NO<sub>3</sub></span> was relatively more important (38 %) during the winter, when aerosol liquid water content (ALWC) and nitrogen oxidation ratio (NOR) were higher. Interestingly, the highest <span class="inline-formula">Δ<sup>17</sup></span>O was coupled with the lowest <span class="inline-formula"><i>δ</i><sup>15</sup></span>N and highest NOR during the record-breaking winter <span class="inline-formula">PM<sub>2.5</sub></span> episodes, revealing the critical role of photochemical oxidation process in severe winter haze development. For <span class="inline-formula">NO<sub><i>x</i></sub></span> sources, atmospheric <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula">NO<sub><i>x</i></sub></span>) estimated from measured <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06178b8a1ccf121783e8e34310fe8913"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00006.png"/></svg:svg></span></span>) considering isotope fractionation effects indicates vehicle emissions as the most important emission source of <span class="inline-formula">NO<sub><i>x</i></sub></span> in Seoul. The contribution from biogenic soil and coal combustion was slightly increased in summer and winter, respectively. Our results built on a multiple-isotope approach provide the first explicit evidence for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0ed2522f87147883b53f48851745fd62"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00007.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00007.png"/></svg:svg></span></span> formation processes and major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources in the Seoul megacity and suggest an effective mitigation measure to improve <span class="inline-formula">PM<sub>2.5</sub></span> pollution.</p>
first_indexed 2024-12-12T21:28:03Z
format Article
id doaj.art-40baa5c823d041c5974ad2e347d17fa9
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-12T21:28:03Z
publishDate 2022-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-40baa5c823d041c5974ad2e347d17fa92022-12-22T00:11:24ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-04-01225099511510.5194/acp-22-5099-2022Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurementsS. Lim0M. Lee1J. Savarino2P. Laj3Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South KoreaDepartment of Earth and Environmental Sciences, Korea University, Seoul 02841, South KoreaInstitute of Environmental Geosciences (IGE), Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, FranceInstitute of Environmental Geosciences (IGE), Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France<p><span class="inline-formula">PM<sub>2.5</sub></span> haze pollution driven by secondary inorganic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e16cba38499a6a16cb1a10e488ec56da"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00001.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00001.png"/></svg:svg></span></span> has been a great concern in East Asia. It is, therefore, imperative to identify its sources and oxidation processes, for which nitrogen and oxygen stable isotopes are powerful tracers. Here, we determined the <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a33a7d42b70ca1fe513ac92c5832eec2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00002.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00002.png"/></svg:svg></span></span>) and <span class="inline-formula">Δ<sup>17</sup></span>O (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8a872e45f44a0fc3c08e466e371cfb3a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00003.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00003.png"/></svg:svg></span></span>) of <span class="inline-formula">PM<sub>2.5</sub></span> in Seoul during the summer of 2018 and the winter of 2018–2019 and estimated quantitatively the relative contribution of oxidation pathways for particulate <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="dd23f13eb24280cbe650be4567ce8571"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00004.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00004.png"/></svg:svg></span></span> and investigated major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources. In the range of <span class="inline-formula">PM<sub>2.5</sub></span> mass concentration from 7.5 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (summer) to 139.0 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (winter), the mean <span class="inline-formula"><i>δ</i><sup>15</sup></span>N was <span class="inline-formula">−0.7</span> ‰ <span class="inline-formula">±</span> 3.3 ‰ and <span class="inline-formula">3.8</span> ‰ <span class="inline-formula">±</span> 3.7 ‰, and the mean <span class="inline-formula">Δ<sup>17</sup></span>O was <span class="inline-formula">23.2</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ and <span class="inline-formula">27.7</span> ‰ <span class="inline-formula">±</span> 2.2 ‰ in the summer and winter, respectively. While OH oxidation was the dominant pathway for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="54a63b90f99919b7f33388d68cde2f58"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00005.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00005.png"/></svg:svg></span></span> during the summer (87 %), nighttime formation via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> and <span class="inline-formula">NO<sub>3</sub></span> was relatively more important (38 %) during the winter, when aerosol liquid water content (ALWC) and nitrogen oxidation ratio (NOR) were higher. Interestingly, the highest <span class="inline-formula">Δ<sup>17</sup></span>O was coupled with the lowest <span class="inline-formula"><i>δ</i><sup>15</sup></span>N and highest NOR during the record-breaking winter <span class="inline-formula">PM<sub>2.5</sub></span> episodes, revealing the critical role of photochemical oxidation process in severe winter haze development. For <span class="inline-formula">NO<sub><i>x</i></sub></span> sources, atmospheric <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula">NO<sub><i>x</i></sub></span>) estimated from measured <span class="inline-formula"><i>δ</i><sup>15</sup></span>N (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M37" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="06178b8a1ccf121783e8e34310fe8913"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00006.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00006.png"/></svg:svg></span></span>) considering isotope fractionation effects indicates vehicle emissions as the most important emission source of <span class="inline-formula">NO<sub><i>x</i></sub></span> in Seoul. The contribution from biogenic soil and coal combustion was slightly increased in summer and winter, respectively. Our results built on a multiple-isotope approach provide the first explicit evidence for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0ed2522f87147883b53f48851745fd62"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5099-2022-ie00007.svg" width="25pt" height="16pt" src="acp-22-5099-2022-ie00007.png"/></svg:svg></span></span> formation processes and major <span class="inline-formula">NO<sub><i>x</i></sub></span> emission sources in the Seoul megacity and suggest an effective mitigation measure to improve <span class="inline-formula">PM<sub>2.5</sub></span> pollution.</p>https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf
spellingShingle S. Lim
M. Lee
J. Savarino
P. Laj
Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
Atmospheric Chemistry and Physics
title Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
title_full Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
title_fullStr Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
title_full_unstemmed Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
title_short Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on <i>δ</i><sup>15</sup>N and Δ<sup>17</sup>O measurements
title_sort oxidation pathways and emission sources of atmospheric particulate nitrate in seoul based on i δ i sup 15 sup n and δ sup 17 sup o measurements
url https://acp.copernicus.org/articles/22/5099/2022/acp-22-5099-2022.pdf
work_keys_str_mv AT slim oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements
AT mlee oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements
AT jsavarino oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements
AT plaj oxidationpathwaysandemissionsourcesofatmosphericparticulatenitrateinseoulbasedonidisup15supnanddsup17supomeasurements