An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate

<p>Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations....

Full description

Bibliographic Details
Main Authors: J. Xu, S. Song, R. M. Harrison, C. Song, L. Wei, Q. Zhang, Y. Sun, L. Lei, C. Zhang, X. Yao, D. Chen, W. Li, M. Wu, H. Tian, L. Luo, S. Tong, J. Wang, G. Shi, Y. Huangfu, Y. Tian, B. Ge, S. Su, C. Peng, Y. Chen, F. Yang, A. Mihajlidi-Zelić, D. Đorđević, S. J. Swift, I. Andrews, J. F. Hamilton, A. Kramawijaya, J. Han, S. Saksakulkrai, C. Baldo, S. Hou, F. Zheng, K. R. Daellenbach, C. Yan, Y. Liu, M. Kulmala, P. Fu, Z. Shi
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/13/6325/2020/amt-13-6325-2020.pdf
_version_ 1819276607481708544
author J. Xu
S. Song
R. M. Harrison
R. M. Harrison
C. Song
L. Wei
Q. Zhang
Y. Sun
L. Lei
C. Zhang
X. Yao
X. Yao
D. Chen
W. Li
M. Wu
H. Tian
L. Luo
S. Tong
W. Li
J. Wang
G. Shi
Y. Huangfu
Y. Tian
B. Ge
S. Su
C. Peng
Y. Chen
F. Yang
A. Mihajlidi-Zelić
D. Đorđević
S. J. Swift
I. Andrews
J. F. Hamilton
Y. Sun
A. Kramawijaya
J. Han
S. Saksakulkrai
C. Baldo
S. Hou
F. Zheng
K. R. Daellenbach
C. Yan
Y. Liu
M. Kulmala
P. Fu
Z. Shi
author_facet J. Xu
S. Song
R. M. Harrison
R. M. Harrison
C. Song
L. Wei
Q. Zhang
Y. Sun
L. Lei
C. Zhang
X. Yao
X. Yao
D. Chen
W. Li
M. Wu
H. Tian
L. Luo
S. Tong
W. Li
J. Wang
G. Shi
Y. Huangfu
Y. Tian
B. Ge
S. Su
C. Peng
Y. Chen
F. Yang
A. Mihajlidi-Zelić
D. Đorđević
S. J. Swift
I. Andrews
J. F. Hamilton
Y. Sun
A. Kramawijaya
J. Han
S. Saksakulkrai
C. Baldo
S. Hou
F. Zheng
K. R. Daellenbach
C. Yan
Y. Liu
M. Kulmala
P. Fu
Z. Shi
author_sort J. Xu
collection DOAJ
description <p>Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="63f11f9b60a09208ebeae789905b238b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00001.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00001.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0aaab3ee324d7a9ba8e4b96f67d8036e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00002.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00002.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="310866e2e55ea172cf2d52bb7208ba35"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00003.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00003.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span>. However, F<span class="inline-formula"><sup>−</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span> and Ca<span class="inline-formula"><sup>2+</sup></span> were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5471cf9633c00eb7ce2a8165ca87d146"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00004.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00004.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00005.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00005.png"/></svg:svg></span></span> and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c16db94ee77df9d9025be9e40133cdd3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00006.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00006.png"/></svg:svg></span></span> generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42&thinsp;%. Cl<span class="inline-formula"><sup>−</sup></span> from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90&thinsp;% and 110&thinsp;%. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="9e5c3b810d685753e2e31321de9aeed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00007.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00007.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00008.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00008.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="ca1e5d7760afee3e44e8a000dc336b4d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00009.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00009.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span> across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="49798bc14746e7788afe38c7f4bc425f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00010.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00010.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9a17d6ab4c67d7f6701d29ccd0703b2e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00011.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00011.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="88ab10ad9afc04907954da18d1889ad9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00012.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00012.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span> decreased by 1.7&thinsp;%, 3.4&thinsp;%, 3.4&thinsp;%, 1.2&thinsp;% and 2.6&thinsp;%, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE&thinsp;/&thinsp;CE) and ion balance (anions–cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent.</p>
first_indexed 2024-12-23T23:42:54Z
format Article
id doaj.art-40bce943339a478785ad5f6d66b6d1f2
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-23T23:42:54Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-40bce943339a478785ad5f6d66b6d1f22022-12-21T17:25:36ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-11-01136325634110.5194/amt-13-6325-2020An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimateJ. Xu0S. Song1R. M. Harrison2R. M. Harrison3C. Song4L. Wei5Q. Zhang6Y. Sun7L. Lei8C. Zhang9X. Yao10X. Yao11D. Chen12W. Li13M. Wu14H. Tian15L. Luo16S. Tong17W. Li18J. Wang19G. Shi20Y. Huangfu21Y. Tian22B. Ge23S. Su24C. Peng25Y. Chen26F. Yang27A. Mihajlidi-Zelić28D. Đorđević29S. J. Swift30I. Andrews31J. F. Hamilton32Y. Sun33A. Kramawijaya34J. Han35S. Saksakulkrai36C. Baldo37S. Hou38F. Zheng39K. R. Daellenbach40C. Yan41Y. Liu42M. Kulmala43P. Fu44Z. Shi45School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKSchool of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USASchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKDepartment of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi ArabiaSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaInstitute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaKey Laboratory of Marine Environment and Ecology, Ministry of Education of China, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, ChinaKey Laboratory of Marine Environment and Ecology, Ministry of Education of China, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, ChinaLaboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, ChinaKey Laboratory of Marine Environment and Ecology, Ministry of Education of China, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, ChinaDepartment of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, ChinaDepartment of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, 310027, ChinaState Key Laboratory of Environmental Simulation and Pollution Control & Center for Atmospheric Environmental Studies, School of Environment, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory of Environmental Simulation and Pollution Control & Center for Atmospheric Environmental Studies, School of Environment, Beijing Normal University, Beijing 100875, ChinaState Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, ChinaState Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, ChinaSchool of Environment, Tsinghua University, Beijing, 100084, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Centre of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Centre of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, ChinaState Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Centre of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, ChinaResearch Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, ChinaResearch Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, ChinaResearch Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, ChinaDepartment of Environmental Science and Engineering, Sichuan University, Chengdu, 610065, ChinaCentre of Excellence in Environmental Chemistry and Engineering – ICTM, University of Belgrade, Njegoševa 12 (Studentski trg 14–16), Belgrade, SerbiaCentre of Excellence in Environmental Chemistry and Engineering – ICTM, University of Belgrade, Njegoševa 12 (Studentski trg 14–16), Belgrade, SerbiaWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UKWolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD, UKSchool of Space and Environment, Beihang University, Beijing, 100191, ChinaSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UKAerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaAerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaAerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaAerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaAerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, ChinaInstitute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, ChinaSchool of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK<p>Water-soluble inorganic ions such as ammonium, nitrate and sulfate are major components of fine aerosols in the atmosphere and are widely used in the estimation of aerosol acidity. However, different experimental practices and instrumentation may lead to uncertainties in ion concentrations. Here, an intercomparison experiment was conducted in 10 different laboratories (labs) to investigate the consistency of inorganic ion concentrations and resultant aerosol acidity estimates using the same set of aerosol filter samples. The results mostly exhibited good agreement for major ions Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="63f11f9b60a09208ebeae789905b238b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00001.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00001.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="0aaab3ee324d7a9ba8e4b96f67d8036e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00002.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00002.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="310866e2e55ea172cf2d52bb7208ba35"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00003.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00003.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span>. However, F<span class="inline-formula"><sup>−</sup></span>, Mg<span class="inline-formula"><sup>2+</sup></span> and Ca<span class="inline-formula"><sup>2+</sup></span> were observed with more variations across the different labs. The Aerosol Chemical Speciation Monitor (ACSM) data of nonrefractory SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5471cf9633c00eb7ce2a8165ca87d146"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00004.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00004.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="78ed0f7e81615226176402cdd6a1afd5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00005.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00005.png"/></svg:svg></span></span> and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c16db94ee77df9d9025be9e40133cdd3"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00006.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00006.png"/></svg:svg></span></span> generally correlated very well with the filter-analysis-based data in our study, but the absolute concentrations differ by up to 42&thinsp;%. Cl<span class="inline-formula"><sup>−</sup></span> from the two methods are correlated, but the concentration differ by more than a factor of 3. The analyses of certified reference materials (CRMs) generally showed a good detection accuracy (DA) of all ions in all the labs, the majority of which ranged between 90&thinsp;% and 110&thinsp;%. The DA was also used to correct the ion concentrations to showcase the importance of using CRMs for calibration check and quality control. Better agreements were found for Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="9e5c3b810d685753e2e31321de9aeed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00007.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00007.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9f81e901bf06635e082f559a787da68a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00008.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00008.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="ca1e5d7760afee3e44e8a000dc336b4d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00009.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00009.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span> across the labs after their concentrations were corrected with DA; the coefficient of variation (CV) of Cl<span class="inline-formula"><sup>−</sup></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="49798bc14746e7788afe38c7f4bc425f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00010.svg" width="13pt" height="17pt" src="amt-13-6325-2020-ie00010.png"/></svg:svg></span></span>, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9a17d6ab4c67d7f6701d29ccd0703b2e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00011.svg" width="9pt" height="16pt" src="amt-13-6325-2020-ie00011.png"/></svg:svg></span></span>, NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="88ab10ad9afc04907954da18d1889ad9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-6325-2020-ie00012.svg" width="8pt" height="15pt" src="amt-13-6325-2020-ie00012.png"/></svg:svg></span></span> and K<span class="inline-formula"><sup>+</sup></span> decreased by 1.7&thinsp;%, 3.4&thinsp;%, 3.4&thinsp;%, 1.2&thinsp;% and 2.6&thinsp;%, respectively, after DA correction. We found that the ratio of anion to cation equivalent concentrations (AE&thinsp;/&thinsp;CE) and ion balance (anions–cations) are not good indicators for aerosol acidity estimates, as the results in different labs did not agree well with each other. In situ aerosol pH calculated from the ISORROPIA II thermodynamic equilibrium model with measured ion and ammonia concentrations showed a similar trend and good agreement across the 10 labs. Our results indicate that although there are important uncertainties in aerosol ion concentration measurements, the estimated aerosol pH from the ISORROPIA II model is more consistent.</p>https://amt.copernicus.org/articles/13/6325/2020/amt-13-6325-2020.pdf
spellingShingle J. Xu
S. Song
R. M. Harrison
R. M. Harrison
C. Song
L. Wei
Q. Zhang
Y. Sun
L. Lei
C. Zhang
X. Yao
X. Yao
D. Chen
W. Li
M. Wu
H. Tian
L. Luo
S. Tong
W. Li
J. Wang
G. Shi
Y. Huangfu
Y. Tian
B. Ge
S. Su
C. Peng
Y. Chen
F. Yang
A. Mihajlidi-Zelić
D. Đorđević
S. J. Swift
I. Andrews
J. F. Hamilton
Y. Sun
A. Kramawijaya
J. Han
S. Saksakulkrai
C. Baldo
S. Hou
F. Zheng
K. R. Daellenbach
C. Yan
Y. Liu
M. Kulmala
P. Fu
Z. Shi
An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
Atmospheric Measurement Techniques
title An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
title_full An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
title_fullStr An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
title_full_unstemmed An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
title_short An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate
title_sort interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography implications for aerosol ph estimate
url https://amt.copernicus.org/articles/13/6325/2020/amt-13-6325-2020.pdf
work_keys_str_mv AT jxu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssong aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT rmharrison aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT rmharrison aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT csong aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT lwei aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT qzhang aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ysun aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT llei aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT czhang aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT xyao aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT xyao aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT dchen aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT wli aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT mwu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT htian aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT lluo aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT stong aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT wli aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jwang aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT gshi aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT yhuangfu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ytian aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT bge aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cpeng aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ychen aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT fyang aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT amihajlidizelic aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT dđorđevic aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT sjswift aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT iandrews aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jfhamilton aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ysun aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT akramawijaya aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jhan aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssaksakulkrai aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cbaldo aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT shou aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT fzheng aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT krdaellenbach aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cyan aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT yliu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT mkulmala aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT pfu aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT zshi aninterlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jxu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssong interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT rmharrison interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT rmharrison interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT csong interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT lwei interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT qzhang interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ysun interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT llei interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT czhang interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT xyao interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT xyao interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT dchen interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT wli interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT mwu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT htian interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT lluo interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT stong interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT wli interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jwang interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT gshi interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT yhuangfu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ytian interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT bge interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cpeng interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ychen interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT fyang interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT amihajlidizelic interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT dđorđevic interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT sjswift interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT iandrews interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jfhamilton interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ysun interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT akramawijaya interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT jhan interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT ssaksakulkrai interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cbaldo interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT shou interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT fzheng interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT krdaellenbach interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT cyan interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT yliu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT mkulmala interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT pfu interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate
AT zshi interlaboratorycomparisonofaerosolinorganicionmeasurementsbyionchromatographyimplicationsforaerosolphestimate