On Homoclinic Solutions of a Semilinear <inline-formula><graphic file="1687-1847-2010-195376-i1.gif"/></inline-formula>-Laplacian Difference Equation with Periodic Coefficients
<p/> <p>We study the existence of homoclinic solutions for semilinear <inline-formula><graphic file="1687-1847-2010-195376-i2.gif"/></inline-formula>-Laplacian difference equations with periodic coefficients. The proof of the main result is based on Brezis-Nir...
Main Authors: | Li Chengyue, Tersian Stepan, Cabada Alberto |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Advances in Difference Equations |
Online Access: | http://www.advancesindifferenceequations.com/content/2010/195376 |
Similar Items
-
Results and Conjectures about Order <inline-formula> <graphic file="1687-1847-2009-134749-i1.gif"/></inline-formula> Lyness' Difference Equation <inline-formula> <graphic file="1687-1847-2009-134749-i2.gif"/></inline-formula> in <inline-formula> <graphic file="1687-1847-2009-134749-i3.gif"/></inline-formula>, with a Particular Study of the Case <inline-formula> <graphic file="1687-1847-2009-134749-i4.gif"/></inline-formula>
by: Rogalski M, et al.
Published: (2009-01-01) -
<inline-formula> <graphic file="1687-1847-2008-815750-i1.gif"/></inline-formula>-Genocchi Numbers and Polynomials Associated with <inline-formula> <graphic file="1687-1847-2008-815750-i2.gif"/></inline-formula>-Genocchi-Type <inline-formula> <graphic file="1687-1847-2008-815750-i3.gif"/></inline-formula>-Functions
by: Cangul IsmailNaci, et al.
Published: (2008-01-01) -
On Boundedness of Solutions of the Difference Equation <inline-formula><graphic file="1687-1847-2009-463169-i1.gif"/></inline-formula> for <inline-formula><graphic file="1687-1847-2009-463169-i2.gif"/></inline-formula>
by: Xi Hongjian, et al.
Published: (2009-01-01) -
A New Approach to <inline-formula><graphic file="1687-1847-2010-951764-i1.gif"/></inline-formula>-Bernoulli Numbers and <inline-formula><graphic file="1687-1847-2010-951764-i2.gif"/></inline-formula>-Bernoulli Polynomials Related to <inline-formula><graphic file="1687-1847-2010-951764-i3.gif"/></inline-formula>-Bernstein Polynomials
by: Açikgöz Mehmet, et al.
Published: (2010-01-01) -
<inline-formula> <graphic file="1687-1847-2008-743295-i1.gif"/></inline-formula>-Bernoulli Numbers Associated with <inline-formula> <graphic file="1687-1847-2008-743295-i2.gif"/></inline-formula>-Stirling Numbers
by: Kim Taekyun
Published: (2008-01-01)