Short-Term Photovoltaic Power Output Prediction Based on <i>k</i>-Fold Cross-Validation and an Ensemble Model

Short-term photovoltaic power forecasting is of great significance for improving the operation of power systems and increasing the penetration of photovoltaic power. To improve the accuracy of short-term photovoltaic power forecasting, an ensemble-model-based short-term photovoltaic power prediction...

Full description

Bibliographic Details
Main Authors: Ruijin Zhu, Weilin Guo, Xuejiao Gong
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/7/1220
Description
Summary:Short-term photovoltaic power forecasting is of great significance for improving the operation of power systems and increasing the penetration of photovoltaic power. To improve the accuracy of short-term photovoltaic power forecasting, an ensemble-model-based short-term photovoltaic power prediction method is proposed. Firstly, the quartile method is used to process raw data, and the Pearson coefficient method is utilized to assess multiple features affecting the short-term photovoltaic power output. Secondly, the structure of the ensemble model is constructed, and a <i>k</i>-fold cross-validation method is used to train the submodels. The prediction results of each submodel are merged. Finally, the validity of the proposed approach is verified using an actual data set from State Power Investment Corporation Limited. The simulation results show that the quartile method can find outliers which contributes to processing the raw data and improving the accuracy of the model. The <i>k</i>-fold cross-validation method can effectively improve the generalization ability of the model, and the ensemble model can achieve higher prediction accuracy than a single model.
ISSN:1996-1073