Numerical Study on Flow and Heat Transfer Characteristics of Supercritical CO<sub>2</sub> in Zigzag Microchannels

The zigzag channel is the uppermost channel type of an industrial printed circuit heat exchanger (PCHE). The effect of geometric properties on the flow and heat transfer performance of the channel is significant to the PCHE design and optimization. Numerical investigations were conducted on the flow...

Full description

Bibliographic Details
Main Authors: Yi Tu, Yu Zeng
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/6/2099
Description
Summary:The zigzag channel is the uppermost channel type of an industrial printed circuit heat exchanger (PCHE). The effect of geometric properties on the flow and heat transfer performance of the channel is significant to the PCHE design and optimization. Numerical investigations were conducted on the flow and heat transfer characteristics of supercritical CO<sub>2</sub> (sCO<sub>2</sub>) in semicircular zigzag channels by computational fluid dynamics method. The shear stress transfer (SST) k–ω model was used as turbulence model and the National Institute of Standards and Technology (NIST) real gas model with REFPROP database was used to evaluate the thermophysical parameters of sCO<sub>2</sub> in this numerical method. The effectiveness of the simulation method is verified by experimental data. Thermal hydraulic performance for zigzag channels with different pitch lengths, bending angles, and hydraulic diameters are studied comparatively based on this numerical method, with the boundary conditions which cover the pseudocritical point. The comparison results show that reducing the bending angle and pitch length will strengthen the effect of boundary layer separation on the leeward side of the wall and enhance the heat transfer performance, but the pressure drop of the channel will also increase, and the decrease of channel hydraulic diameter is beneficial to the heat transfer enhancement, but it is not as significant as that of the straight channel.
ISSN:1996-1073