Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments

For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life...

Full description

Bibliographic Details
Main Authors: JianXun Shen, Yan Chen, Yu Sun, Li Liu, YongXin Pan, Wei Lin
Format: Article
Language:English
Published: Science Press 2022-08-01
Series:Earth and Planetary Physics
Subjects:
Online Access:http://www.eppcgs.org/article/doi/10.26464/epp2022042?pageType=en
_version_ 1811262100284112896
author JianXun Shen
Yan Chen
Yu Sun
Li Liu
YongXin Pan
Wei Lin
author_facet JianXun Shen
Yan Chen
Yu Sun
Li Liu
YongXin Pan
Wei Lin
author_sort JianXun Shen
collection DOAJ
description For decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life” and “biosignature”, have been given considerable attention. Due to the high costs of direct exploration of Mars, Mars-like regions on Earth have been invaluable targets for astrobiological research, places where scientists could practice the search for “biosignatures” and refine ways to detect them. This review summarizes scientific instrumental techniques that have resulted from this work. Instruments must necessarily be our “eyes” and “hands” as we attempt to identify and quantify biosignatures on Mars. Scientific devices that can be applied in astrobiology include mass spectrometers and electromagnetic-spectrum-based spectrometers, redox potential indicators, circular dichroism polarimeters, in situ nucleic acid sequencers, life isolation/cultivation systems, and imagers. These devices and how to interpret the data they collect have been tested in Mars-analog extreme environments on Earth to validate their practicality on Mars. To anticipate the challenges of instrumental detection of biosignatures through the full evolutionary history of Mars, Terrestrial Mars analogs are divided into four major categories according to their similarities to different Martian geological periods (the Early−Middle Noachian Period, the Late Noachian−Early Hesperian Period, the Late Hesperian−Early Amazonian Period, and the Middle−Late Amazonian Period). Future missions are suggested that would focus more intensively on Mars’ Southern Hemisphere, once landing issues there are solved by advances in spacecraft engineering, since exploration of these early terrains will permit investigations covering a wider continuum of the shifting habitability of Mars through its geological history. Finally, this paper reviews practical applications of the range of scientific instruments listed above, based on the four categories of Mars analogs here on Earth. We review the selection of instruments suitable for autonomous robotic rover tests in these Mars analogs. From considerations of engineering efficiency, a Mars rover ought to be equipped with as few instrument assemblies as possible. Therefore, once candidate landing regions on Mars are defined, portable suites of instruments should be smartly devised on the basis of the known geological, geochemical, geomorphological, and chronological characteristics of each Martian landing region. Of course, if Mars sample-return missions are successful, such samples will allow experiments in laboratories on Earth that can be far more comprehensive and affordable than is likely to be practicable on Mars. To exclude false positive and false negative conclusions in the search for extraterrestrial life, multiple diverse and complementary analytical techniques must be combined, replicated, and carefully interpreted. The question of whether signatures of life can be detected on Mars is of the greatest importance. Answering that question is extremely challenging but appears to have become manageable.
first_indexed 2024-04-12T19:19:18Z
format Article
id doaj.art-40e3ac53da5e4508be7dce9fdc66dc5d
institution Directory Open Access Journal
issn 2096-3955
language English
last_indexed 2024-04-12T19:19:18Z
publishDate 2022-08-01
publisher Science Press
record_format Article
series Earth and Planetary Physics
spelling doaj.art-40e3ac53da5e4508be7dce9fdc66dc5d2022-12-22T03:19:39ZengScience PressEarth and Planetary Physics2096-39552022-08-016543145010.26464/epp2022042RE329-shenjianxun-FDetection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessmentsJianXun Shen0Yan Chen1Yu Sun2Li Liu3YongXin Pan4Wei Lin5Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, ChinaFor decades, the search for potential signs of Martian life has attracted strong international interest and has led to significant planning and scientific implementation. Clearly, in order to detect potential life signals beyond Earth, fundamental questions, such as how to define such terms as “life” and “biosignature”, have been given considerable attention. Due to the high costs of direct exploration of Mars, Mars-like regions on Earth have been invaluable targets for astrobiological research, places where scientists could practice the search for “biosignatures” and refine ways to detect them. This review summarizes scientific instrumental techniques that have resulted from this work. Instruments must necessarily be our “eyes” and “hands” as we attempt to identify and quantify biosignatures on Mars. Scientific devices that can be applied in astrobiology include mass spectrometers and electromagnetic-spectrum-based spectrometers, redox potential indicators, circular dichroism polarimeters, in situ nucleic acid sequencers, life isolation/cultivation systems, and imagers. These devices and how to interpret the data they collect have been tested in Mars-analog extreme environments on Earth to validate their practicality on Mars. To anticipate the challenges of instrumental detection of biosignatures through the full evolutionary history of Mars, Terrestrial Mars analogs are divided into four major categories according to their similarities to different Martian geological periods (the Early−Middle Noachian Period, the Late Noachian−Early Hesperian Period, the Late Hesperian−Early Amazonian Period, and the Middle−Late Amazonian Period). Future missions are suggested that would focus more intensively on Mars’ Southern Hemisphere, once landing issues there are solved by advances in spacecraft engineering, since exploration of these early terrains will permit investigations covering a wider continuum of the shifting habitability of Mars through its geological history. Finally, this paper reviews practical applications of the range of scientific instruments listed above, based on the four categories of Mars analogs here on Earth. We review the selection of instruments suitable for autonomous robotic rover tests in these Mars analogs. From considerations of engineering efficiency, a Mars rover ought to be equipped with as few instrument assemblies as possible. Therefore, once candidate landing regions on Mars are defined, portable suites of instruments should be smartly devised on the basis of the known geological, geochemical, geomorphological, and chronological characteristics of each Martian landing region. Of course, if Mars sample-return missions are successful, such samples will allow experiments in laboratories on Earth that can be far more comprehensive and affordable than is likely to be practicable on Mars. To exclude false positive and false negative conclusions in the search for extraterrestrial life, multiple diverse and complementary analytical techniques must be combined, replicated, and carefully interpreted. The question of whether signatures of life can be detected on Mars is of the greatest importance. Answering that question is extremely challenging but appears to have become manageable.http://www.eppcgs.org/article/doi/10.26464/epp2022042?pageType=enbiosignaturedetection frameworkextraterrestrial lifeevolutionary history of marsfield trialinstrumentmars analog
spellingShingle JianXun Shen
Yan Chen
Yu Sun
Li Liu
YongXin Pan
Wei Lin
Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
Earth and Planetary Physics
biosignature
detection framework
extraterrestrial life
evolutionary history of mars
field trial
instrument
mars analog
title Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
title_full Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
title_fullStr Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
title_full_unstemmed Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
title_short Detection of biosignatures in Terrestrial analogs of Martian regions: Strategical and technical assessments
title_sort detection of biosignatures in terrestrial analogs of martian regions strategical and technical assessments
topic biosignature
detection framework
extraterrestrial life
evolutionary history of mars
field trial
instrument
mars analog
url http://www.eppcgs.org/article/doi/10.26464/epp2022042?pageType=en
work_keys_str_mv AT jianxunshen detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments
AT yanchen detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments
AT yusun detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments
AT liliu detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments
AT yongxinpan detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments
AT weilin detectionofbiosignaturesinterrestrialanalogsofmartianregionsstrategicalandtechnicalassessments