Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
<p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most abundant organic peroxides in the atmosphere; yet the kinetics of its reaction with OH, believed to be the major sink, have only been studied once experimentally....
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-11-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf |
_version_ | 1819205302492332032 |
---|---|
author | M. Berasategui D. Amedro L. Vereecken J. Lelieveld J. N. Crowley |
author_facet | M. Berasategui D. Amedro L. Vereecken J. Lelieveld J. N. Crowley |
author_sort | M. Berasategui |
collection | DOAJ |
description | <p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most
abundant organic peroxides in the atmosphere; yet the kinetics of its
reaction with OH, believed to be the major sink, have only been studied once
experimentally. In this work we combine a pulsed-laser photolysis kinetic
study of the title reaction with theoretical calculations of the rate
coefficient and mechanism. We demonstrate that the rate coefficient is
orders of magnitude lower than previously determined, with an experimentally
derived upper limit of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="347f9a23726b635d085f1782f83bec14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00001.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00001.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span>. The relatively low rate coefficient is in good agreement with
the theoretical result of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d101635913758c61d7e0a25b12da9de"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00002.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00002.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span> at 298 K, increasing to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">6</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7864ece29747aa541b4917089a12eb66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00003.svg" width="56pt" height="14pt" src="acp-20-13541-2020-ie00003.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span> in the cold upper
troposphere but with associated uncertainty of a factor of 2. The reaction
proceeds mainly via abstraction of the peroxidic hydrogen via a relatively
weakly bonded and short-lived prereaction complex, in which H abstraction
occurs only slowly due to a high barrier and low tunnelling probabilities.
Our results imply that the lifetime of CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH with respect to
OH-initiated degradation in the atmosphere is of the order of 1 year (not
days as previously believed) and that its major sink in the free and upper
troposphere is likely to be photolysis, with deposition important in the
boundary layer.</p> |
first_indexed | 2024-12-23T04:49:33Z |
format | Article |
id | doaj.art-40edace21d96433ba9c25f225d5e8a19 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-23T04:49:33Z |
publishDate | 2020-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-40edace21d96433ba9c25f225d5e8a192022-12-21T17:59:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120135411355510.5194/acp-20-13541-2020Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanismM. Berasategui0D. Amedro1L. Vereecken2J. Lelieveld3J. N. Crowley4Division of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyInstitute for Energy and Climate Research: IEK-8, Forschungszentrum Juelich, 52425 Juelich, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany<p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most abundant organic peroxides in the atmosphere; yet the kinetics of its reaction with OH, believed to be the major sink, have only been studied once experimentally. In this work we combine a pulsed-laser photolysis kinetic study of the title reaction with theoretical calculations of the rate coefficient and mechanism. We demonstrate that the rate coefficient is orders of magnitude lower than previously determined, with an experimentally derived upper limit of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="347f9a23726b635d085f1782f83bec14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00001.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00001.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span>. The relatively low rate coefficient is in good agreement with the theoretical result of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d101635913758c61d7e0a25b12da9de"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00002.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00002.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span> at 298 K, increasing to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">6</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7864ece29747aa541b4917089a12eb66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00003.svg" width="56pt" height="14pt" src="acp-20-13541-2020-ie00003.png"/></svg:svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> molec.<span class="inline-formula"><sup>−1</sup></span> s<span class="inline-formula"><sup>−1</sup></span> in the cold upper troposphere but with associated uncertainty of a factor of 2. The reaction proceeds mainly via abstraction of the peroxidic hydrogen via a relatively weakly bonded and short-lived prereaction complex, in which H abstraction occurs only slowly due to a high barrier and low tunnelling probabilities. Our results imply that the lifetime of CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH with respect to OH-initiated degradation in the atmosphere is of the order of 1 year (not days as previously believed) and that its major sink in the free and upper troposphere is likely to be photolysis, with deposition important in the boundary layer.</p>https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf |
spellingShingle | M. Berasategui D. Amedro L. Vereecken J. Lelieveld J. N. Crowley Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism Atmospheric Chemistry and Physics |
title | Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism |
title_full | Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism |
title_fullStr | Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism |
title_full_unstemmed | Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism |
title_short | Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism |
title_sort | reaction between ch sub 3 sub c o ooh peracetic acid and oh in the gas phase a combined experimental and theoretical study of the kinetics and mechanism |
url | https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf |
work_keys_str_mv | AT mberasategui reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism AT damedro reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism AT lvereecken reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism AT jlelieveld reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism AT jncrowley reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism |