Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism

<p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most abundant organic peroxides in the atmosphere; yet the kinetics of its reaction with OH, believed to be the major sink, have only been studied once experimentally....

Full description

Bibliographic Details
Main Authors: M. Berasategui, D. Amedro, L. Vereecken, J. Lelieveld, J. N. Crowley
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf
_version_ 1819205302492332032
author M. Berasategui
D. Amedro
L. Vereecken
J. Lelieveld
J. N. Crowley
author_facet M. Berasategui
D. Amedro
L. Vereecken
J. Lelieveld
J. N. Crowley
author_sort M. Berasategui
collection DOAJ
description <p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most abundant organic peroxides in the atmosphere; yet the kinetics of its reaction with OH, believed to be the major sink, have only been studied once experimentally. In this work we combine a pulsed-laser photolysis kinetic study of the title reaction with theoretical calculations of the rate coefficient and mechanism. We demonstrate that the rate coefficient is orders of magnitude lower than previously determined, with an experimentally derived upper limit of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="347f9a23726b635d085f1782f83bec14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00001.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00001.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. The relatively low rate coefficient is in good agreement with the theoretical result of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d101635913758c61d7e0a25b12da9de"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00002.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00002.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> at 298&thinsp;K, increasing to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">6</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7864ece29747aa541b4917089a12eb66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00003.svg" width="56pt" height="14pt" src="acp-20-13541-2020-ie00003.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> in the cold upper troposphere but with associated uncertainty of a factor of 2. The reaction proceeds mainly via abstraction of the peroxidic hydrogen via a relatively weakly bonded and short-lived prereaction complex, in which H abstraction occurs only slowly due to a high barrier and low tunnelling probabilities. Our results imply that the lifetime of CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH with respect to OH-initiated degradation in the atmosphere is of the order of 1 year (not days as previously believed) and that its major sink in the free and upper troposphere is likely to be photolysis, with deposition important in the boundary layer.</p>
first_indexed 2024-12-23T04:49:33Z
format Article
id doaj.art-40edace21d96433ba9c25f225d5e8a19
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-23T04:49:33Z
publishDate 2020-11-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-40edace21d96433ba9c25f225d5e8a192022-12-21T17:59:29ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-11-0120135411355510.5194/acp-20-13541-2020Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanismM. Berasategui0D. Amedro1L. Vereecken2J. Lelieveld3J. N. Crowley4Division of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyInstitute for Energy and Climate Research: IEK-8, Forschungszentrum Juelich, 52425 Juelich, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, GermanyDivision of Atmospheric Chemistry, Max Planck Institute for Chemistry, 55128 Mainz, Germany<p>Peracetic acid (CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH) is one of the most abundant organic peroxides in the atmosphere; yet the kinetics of its reaction with OH, believed to be the major sink, have only been studied once experimentally. In this work we combine a pulsed-laser photolysis kinetic study of the title reaction with theoretical calculations of the rate coefficient and mechanism. We demonstrate that the rate coefficient is orders of magnitude lower than previously determined, with an experimentally derived upper limit of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">4</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="347f9a23726b635d085f1782f83bec14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00001.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00001.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. The relatively low rate coefficient is in good agreement with the theoretical result of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">3</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4d101635913758c61d7e0a25b12da9de"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00002.svg" width="46pt" height="14pt" src="acp-20-13541-2020-ie00002.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> at 298&thinsp;K, increasing to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mn mathvariant="normal">6</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">14</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="56pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7864ece29747aa541b4917089a12eb66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-20-13541-2020-ie00003.svg" width="56pt" height="14pt" src="acp-20-13541-2020-ie00003.png"/></svg:svg></span></span>&thinsp;cm<span class="inline-formula"><sup>3</sup></span>&thinsp;molec.<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> in the cold upper troposphere but with associated uncertainty of a factor of 2. The reaction proceeds mainly via abstraction of the peroxidic hydrogen via a relatively weakly bonded and short-lived prereaction complex, in which H abstraction occurs only slowly due to a high barrier and low tunnelling probabilities. Our results imply that the lifetime of CH<span class="inline-formula"><sub>3</sub></span>C(O)OOH with respect to OH-initiated degradation in the atmosphere is of the order of 1 year (not days as previously believed) and that its major sink in the free and upper troposphere is likely to be photolysis, with deposition important in the boundary layer.</p>https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf
spellingShingle M. Berasategui
D. Amedro
L. Vereecken
J. Lelieveld
J. N. Crowley
Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
Atmospheric Chemistry and Physics
title Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
title_full Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
title_fullStr Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
title_full_unstemmed Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
title_short Reaction between CH<sub>3</sub>C(O)OOH (peracetic acid) and OH in the gas phase: a combined experimental and theoretical study of the kinetics and mechanism
title_sort reaction between ch sub 3 sub c o ooh peracetic acid and oh in the gas phase a combined experimental and theoretical study of the kinetics and mechanism
url https://acp.copernicus.org/articles/20/13541/2020/acp-20-13541-2020.pdf
work_keys_str_mv AT mberasategui reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism
AT damedro reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism
AT lvereecken reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism
AT jlelieveld reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism
AT jncrowley reactionbetweenchsub3subcooohperaceticacidandohinthegasphaseacombinedexperimentalandtheoreticalstudyofthekineticsandmechanism