Supercool composite Dark Matter beyond 100 TeV

Abstract Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is sup...

Full description

Bibliographic Details
Main Authors: Iason Baldes, Yann Gouttenoire, Filippo Sala, Géraldine Servant
Format: Article
Language:English
Published: SpringerOpen 2022-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP07(2022)084
_version_ 1818198221366755328
author Iason Baldes
Yann Gouttenoire
Filippo Sala
Géraldine Servant
author_facet Iason Baldes
Yann Gouttenoire
Filippo Sala
Géraldine Servant
author_sort Iason Baldes
collection DOAJ
description Abstract Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is supercooled, its dynamics allows for Dark Matter masses up to 106 TeV. We derive the precise parameter space compatible with all experimental constraints, finding that this scenario can be tested partly by telescopes and entirely by gravitational waves.
first_indexed 2024-12-12T02:02:25Z
format Article
id doaj.art-40f6759f367643a8bfd2cc438e4fc64d
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-12-12T02:02:25Z
publishDate 2022-07-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-40f6759f367643a8bfd2cc438e4fc64d2022-12-22T00:42:07ZengSpringerOpenJournal of High Energy Physics1029-84792022-07-012022718210.1007/JHEP07(2022)084Supercool composite Dark Matter beyond 100 TeVIason Baldes0Yann Gouttenoire1Filippo Sala2Géraldine Servant3Service de Physique Théorique, Université Libre de BruxellesDeutsches Elektronen-Synchrotron DESYLPTHE, CNRS & Sorbonne UniversitéDeutsches Elektronen-Synchrotron DESYAbstract Dark Matter could be a composite state of a confining sector with an approximate scale symmetry. We consider the case where the associated pseudo-Goldstone boson, the dilaton, mediates its interactions with the Standard Model. When the confining phase transition in the early universe is supercooled, its dynamics allows for Dark Matter masses up to 106 TeV. We derive the precise parameter space compatible with all experimental constraints, finding that this scenario can be tested partly by telescopes and entirely by gravitational waves.https://doi.org/10.1007/JHEP07(2022)084Beyond Standard ModelConfinementCosmology of Theories beyond the SMTechnicolor and Composite Models
spellingShingle Iason Baldes
Yann Gouttenoire
Filippo Sala
Géraldine Servant
Supercool composite Dark Matter beyond 100 TeV
Journal of High Energy Physics
Beyond Standard Model
Confinement
Cosmology of Theories beyond the SM
Technicolor and Composite Models
title Supercool composite Dark Matter beyond 100 TeV
title_full Supercool composite Dark Matter beyond 100 TeV
title_fullStr Supercool composite Dark Matter beyond 100 TeV
title_full_unstemmed Supercool composite Dark Matter beyond 100 TeV
title_short Supercool composite Dark Matter beyond 100 TeV
title_sort supercool composite dark matter beyond 100 tev
topic Beyond Standard Model
Confinement
Cosmology of Theories beyond the SM
Technicolor and Composite Models
url https://doi.org/10.1007/JHEP07(2022)084
work_keys_str_mv AT iasonbaldes supercoolcompositedarkmatterbeyond100tev
AT yanngouttenoire supercoolcompositedarkmatterbeyond100tev
AT filipposala supercoolcompositedarkmatterbeyond100tev
AT geraldineservant supercoolcompositedarkmatterbeyond100tev