Elucidating Synergistic Effects of Different Metal Ratios in Bimetallic Fe/Co-N-C Catalysts for Oxygen Reduction Reaction

Lowering or eliminating the noble-metal content in oxygen reduction fuel cell catalysts could propel the large-scale introduction of commercial fuel cell systems. Several noble-metal free catalysts are already under investigation with the metal-nitrogen-carbon (Me-N-C) system being one of the most p...

Full description

Bibliographic Details
Main Authors: Marius Gollasch, Julia Müller-Hülstede, Henrike Schmies, Dana Schonvogel, Peter Wagner, Alexander Dyck, Michael Wark
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/7/841
Description
Summary:Lowering or eliminating the noble-metal content in oxygen reduction fuel cell catalysts could propel the large-scale introduction of commercial fuel cell systems. Several noble-metal free catalysts are already under investigation with the metal-nitrogen-carbon (Me-N-C) system being one of the most promising. In this study, a systematic approach to investigate the influence of metal ratios in bimetallic Me-N-C fuel cells oxygen reduction reaction (ORR) catalysts has been taken. Different catalysts with varying ratios of Fe and Co have been synthesized and characterized both physically and electrochemically in terms of activity, selectivity and stability with the addition of an accelerated stress test (AST). The catalysts show different electrochemical properties depending on the metal ratio such as a high electrochemical mass activity with increasing Fe ratio. Properties do not change linearly with the metal ratio, with a Fe/Co ratio of 5:3 showing a higher mass activity with simultaneous higher stability. Selectivity indicators plateau for catalysts with a Co content of 50% metal ratio and less, showing the same values as a monometallic Co catalyst. These findings indicate a deeper relationship between the ratio of different metals and physical and electrochemical properties in bimetallic Me-N-C catalysts.
ISSN:2073-4344