Modeling Length of Hospital Stay for Patients With COVID-19 in West Sumatra Using Quantile Regression Approach
This study aims to construct the model for the length of hospital stay for patients with COVID-19 using quantile regression and Bayesian quantile approaches. The quantile regression models the relationship at any point of the conditional distribution of the dependent variable on several independent...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mathematics Department UIN Maulana Malik Ibrahim Malang
2021-11-01
|
Series: | Cauchy: Jurnal Matematika Murni dan Aplikasi |
Subjects: | |
Online Access: | https://ejournal.uin-malang.ac.id/index.php/Math/article/view/12995 |
Summary: | This study aims to construct the model for the length of hospital stay for patients with COVID-19 using quantile regression and Bayesian quantile approaches. The quantile regression models the relationship at any point of the conditional distribution of the dependent variable on several independent variables. The Bayesian quantile regression combines the concept of quantile analysis into the Bayesian approach. In the Bayesian approach, the Asymmetric Laplace Distribution (ALD) distribution is used to form the likelihood function as the basis for formulating the posterior distribution. All 688 patients with COVID-19 treated in M. Djamil Hospital and Universitas Andalas Hospital in Padang City between March-July 2020 were used in this study. This study found that the Bayesian quantile regression method results in a smaller 95% confidence interval and higher value than the quantile regression method. It is concluded that the Bayesian quantile regression method tends to yield a better model than the quantile method. Based on the Bayesian quantile regression method, it investigates that the length of hospital stay for patients with COVID-19 in West Sumatra is significantly influenced by Age, Diagnoses status, and Discharge status. |
---|---|
ISSN: | 2086-0382 2477-3344 |