MANNGA: A Robust Method for Gap Filling Meteorological Data
Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the s...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Meteorologia
|
Series: | Revista Brasileira de Meteorologia |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=en |
_version_ | 1828531318610198528 |
---|---|
author | Thiago Meirelles Ventura Claudia Aparecida Martins Josiel Maimone de Figueiredo Allan Gonçalves de Oliveira Johnata Rodrigo Pinheiro Montanher |
author_facet | Thiago Meirelles Ventura Claudia Aparecida Martins Josiel Maimone de Figueiredo Allan Gonçalves de Oliveira Johnata Rodrigo Pinheiro Montanher |
author_sort | Thiago Meirelles Ventura |
collection | DOAJ |
description | Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language. |
first_indexed | 2024-12-11T22:35:57Z |
format | Article |
id | doaj.art-4108e5b531144cf194865d0e8fc40f71 |
institution | Directory Open Access Journal |
issn | 1982-4351 |
language | English |
last_indexed | 2024-12-11T22:35:57Z |
publisher | Sociedade Brasileira de Meteorologia |
record_format | Article |
series | Revista Brasileira de Meteorologia |
spelling | doaj.art-4108e5b531144cf194865d0e8fc40f712022-12-22T00:47:57ZengSociedade Brasileira de MeteorologiaRevista Brasileira de Meteorologia1982-435134231532310.1590/0102-77863340035S0102-77862019000200315MANNGA: A Robust Method for Gap Filling Meteorological DataThiago Meirelles VenturaClaudia Aparecida MartinsJosiel Maimone de FigueiredoAllan Gonçalves de OliveiraJohnata Rodrigo Pinheiro MontanherAbstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=endados multivariadosredes neurais artificiaisalgoritmos genéticossoftware livre |
spellingShingle | Thiago Meirelles Ventura Claudia Aparecida Martins Josiel Maimone de Figueiredo Allan Gonçalves de Oliveira Johnata Rodrigo Pinheiro Montanher MANNGA: A Robust Method for Gap Filling Meteorological Data Revista Brasileira de Meteorologia dados multivariados redes neurais artificiais algoritmos genéticos software livre |
title | MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_full | MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_fullStr | MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_full_unstemmed | MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_short | MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_sort | mannga a robust method for gap filling meteorological data |
topic | dados multivariados redes neurais artificiais algoritmos genéticos software livre |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=en |
work_keys_str_mv | AT thiagomeirellesventura manngaarobustmethodforgapfillingmeteorologicaldata AT claudiaaparecidamartins manngaarobustmethodforgapfillingmeteorologicaldata AT josielmaimonedefigueiredo manngaarobustmethodforgapfillingmeteorologicaldata AT allangoncalvesdeoliveira manngaarobustmethodforgapfillingmeteorologicaldata AT johnatarodrigopinheiromontanher manngaarobustmethodforgapfillingmeteorologicaldata |