MANNGA: A Robust Method for Gap Filling Meteorological Data

Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the s...

Full description

Bibliographic Details
Main Authors: Thiago Meirelles Ventura, Claudia Aparecida Martins, Josiel Maimone de Figueiredo, Allan Gonçalves de Oliveira, Johnata Rodrigo Pinheiro Montanher
Format: Article
Language:English
Published: Sociedade Brasileira de Meteorologia
Series:Revista Brasileira de Meteorologia
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=en
_version_ 1828531318610198528
author Thiago Meirelles Ventura
Claudia Aparecida Martins
Josiel Maimone de Figueiredo
Allan Gonçalves de Oliveira
Johnata Rodrigo Pinheiro Montanher
author_facet Thiago Meirelles Ventura
Claudia Aparecida Martins
Josiel Maimone de Figueiredo
Allan Gonçalves de Oliveira
Johnata Rodrigo Pinheiro Montanher
author_sort Thiago Meirelles Ventura
collection DOAJ
description Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
first_indexed 2024-12-11T22:35:57Z
format Article
id doaj.art-4108e5b531144cf194865d0e8fc40f71
institution Directory Open Access Journal
issn 1982-4351
language English
last_indexed 2024-12-11T22:35:57Z
publisher Sociedade Brasileira de Meteorologia
record_format Article
series Revista Brasileira de Meteorologia
spelling doaj.art-4108e5b531144cf194865d0e8fc40f712022-12-22T00:47:57ZengSociedade Brasileira de MeteorologiaRevista Brasileira de Meteorologia1982-435134231532310.1590/0102-77863340035S0102-77862019000200315MANNGA: A Robust Method for Gap Filling Meteorological DataThiago Meirelles VenturaClaudia Aparecida MartinsJosiel Maimone de FigueiredoAllan Gonçalves de OliveiraJohnata Rodrigo Pinheiro MontanherAbstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=endados multivariadosredes neurais artificiaisalgoritmos genéticossoftware livre
spellingShingle Thiago Meirelles Ventura
Claudia Aparecida Martins
Josiel Maimone de Figueiredo
Allan Gonçalves de Oliveira
Johnata Rodrigo Pinheiro Montanher
MANNGA: A Robust Method for Gap Filling Meteorological Data
Revista Brasileira de Meteorologia
dados multivariados
redes neurais artificiais
algoritmos genéticos
software livre
title MANNGA: A Robust Method for Gap Filling Meteorological Data
title_full MANNGA: A Robust Method for Gap Filling Meteorological Data
title_fullStr MANNGA: A Robust Method for Gap Filling Meteorological Data
title_full_unstemmed MANNGA: A Robust Method for Gap Filling Meteorological Data
title_short MANNGA: A Robust Method for Gap Filling Meteorological Data
title_sort mannga a robust method for gap filling meteorological data
topic dados multivariados
redes neurais artificiais
algoritmos genéticos
software livre
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315&lng=en&tlng=en
work_keys_str_mv AT thiagomeirellesventura manngaarobustmethodforgapfillingmeteorologicaldata
AT claudiaaparecidamartins manngaarobustmethodforgapfillingmeteorologicaldata
AT josielmaimonedefigueiredo manngaarobustmethodforgapfillingmeteorologicaldata
AT allangoncalvesdeoliveira manngaarobustmethodforgapfillingmeteorologicaldata
AT johnatarodrigopinheiromontanher manngaarobustmethodforgapfillingmeteorologicaldata