On size multipartite Ramsey numbers for stars versus paths and cycles
<p>Let $K_{l\times t}$ be a complete, balanced, multipartite graph consisting of $l$ partite sets and $t$ vertices in each partite set. For given two graphs $G_1$ and $G_2$, and integer $j\geq 2$, the size multipartite Ramsey number $m_j(G_1,G_2)$ is the smallest integer $t$ such that every fa...
Main Authors: | Anie Lusiani, Edy Tri Baskoro, Suhadi Wido Saputro |
---|---|
Format: | Article |
Language: | English |
Published: |
Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
2017-04-01
|
Series: | Electronic Journal of Graph Theory and Applications |
Subjects: | |
Online Access: | https://www.ejgta.org/index.php/ejgta/article/view/318 |
Similar Items
-
On size multipartite Ramsey numbers for stars
by: Anie Lusiani, et al.
Published: (2020-01-01) -
On Size Bipartite and Tripartite Ramsey Numbers for The Star Forest and Path on 3 Vertices
by: Anie Lusiani, et al.
Published: (2020-04-01) -
Diagonal Ramsey numbers in multipartite graphs related to stars
by: Chula Janak Jayawardene
Published: (2022-03-01) -
Bilangan Ramsey Multipartit Himpunan untuk Kombinasi Graf Lintasan kecil dan Graf Bintang
by: Syafrizal Syafrizal, et al.
Published: (2021-08-01) -
The Size, Multipartite Ramsey Numbers for <i>nK</i><sub>2</sub> Versus Path–Path and Cycle
by: Yaser Rowshan, et al.
Published: (2021-04-01)