Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models

<p>With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networ...

Full description

Bibliographic Details
Main Authors: T. Uchida, J. Le Sommer, C. Stern, R. P. Abernathey, C. Holdgraf, A. Albert, L. Brodeau, E. P. Chassignet, X. Xu, J. Gula, G. Roullet, N. Koldunov, S. Danilov, Q. Wang, D. Menemenlis, C. Bricaud, B. K. Arbic, J. F. Shriver, F. Qiao, B. Xiao, A. Biastoch, R. Schubert, B. Fox-Kemper, W. K. Dewar, A. Wallcraft
Format: Article
Language:English
Published: Copernicus Publications 2022-07-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/15/5829/2022/gmd-15-5829-2022.pdf
_version_ 1811312692417265664
author T. Uchida
J. Le Sommer
C. Stern
R. P. Abernathey
C. Holdgraf
A. Albert
L. Brodeau
L. Brodeau
E. P. Chassignet
X. Xu
J. Gula
J. Gula
G. Roullet
N. Koldunov
S. Danilov
Q. Wang
D. Menemenlis
C. Bricaud
B. K. Arbic
J. F. Shriver
F. Qiao
B. Xiao
A. Biastoch
A. Biastoch
R. Schubert
R. Schubert
B. Fox-Kemper
W. K. Dewar
W. K. Dewar
A. Wallcraft
author_facet T. Uchida
J. Le Sommer
C. Stern
R. P. Abernathey
C. Holdgraf
A. Albert
L. Brodeau
L. Brodeau
E. P. Chassignet
X. Xu
J. Gula
J. Gula
G. Roullet
N. Koldunov
S. Danilov
Q. Wang
D. Menemenlis
C. Bricaud
B. K. Arbic
J. F. Shriver
F. Qiao
B. Xiao
A. Biastoch
A. Biastoch
R. Schubert
R. Schubert
B. Fox-Kemper
W. K. Dewar
W. K. Dewar
A. Wallcraft
author_sort T. Uchida
collection DOAJ
description <p>With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.</p>
first_indexed 2024-04-13T10:41:19Z
format Article
id doaj.art-410e7dca56c44863b19f8edf164d36e3
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-04-13T10:41:19Z
publishDate 2022-07-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-410e7dca56c44863b19f8edf164d36e32022-12-22T02:49:55ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032022-07-01155829585610.5194/gmd-15-5829-2022Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean modelsT. Uchida0J. Le Sommer1C. Stern2R. P. Abernathey3C. Holdgraf4A. Albert5L. Brodeau6L. Brodeau7E. P. Chassignet8X. Xu9J. Gula10J. Gula11G. Roullet12N. Koldunov13S. Danilov14Q. Wang15D. Menemenlis16C. Bricaud17B. K. Arbic18J. F. Shriver19F. Qiao20B. Xiao21A. Biastoch22A. Biastoch23R. Schubert24R. Schubert25B. Fox-Kemper26W. K. Dewar27W. K. Dewar28A. Wallcraft29Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Gêosciences de l’Environnement, Grenoble, FranceUniversité Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Gêosciences de l’Environnement, Grenoble, FranceLamont-Doherty Earth Observatory, Columbia University in the City of New York, New York City, USALamont-Doherty Earth Observatory, Columbia University in the City of New York, New York City, USA2i2c.org, Portland, Oregon, USAUniversité Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Gêosciences de l’Environnement, Grenoble, FranceOcean Next, Grenoble, FranceDatlas, Grenoble, FranceCenter for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USACenter for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USAUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, FranceInstitut Universitaire de France (IUF), Paris, FranceUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, FranceAlfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Bremerhaven, GermanyAlfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Bremerhaven, GermanyAlfred Wegener Institute (AWI), Helmholtz Center for Polar and Marine Research, Bremerhaven, GermanyJet Propulsion Laboratory, National Aeronautics and Space Administration (NASA), Palisades, California, USAMercator Ocean International, Toulouse, FranceDepartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USAOceanography Division, US Naval Research Laboratory, Hancock, Mississippi, USAFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, ChinaFirst Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao, ChinaGEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, GermanyDepartment of Ocean Circulation and Climate Dynamics, Kiel University, Kiel, GermanyUniv. Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, FranceGEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, GermanyDepartment of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USAUniversité Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Gêosciences de l’Environnement, Grenoble, FranceDepartment of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USACenter for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, Florida, USA<p>With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.</p>https://gmd.copernicus.org/articles/15/5829/2022/gmd-15-5829-2022.pdf
spellingShingle T. Uchida
J. Le Sommer
C. Stern
R. P. Abernathey
C. Holdgraf
A. Albert
L. Brodeau
L. Brodeau
E. P. Chassignet
X. Xu
J. Gula
J. Gula
G. Roullet
N. Koldunov
S. Danilov
Q. Wang
D. Menemenlis
C. Bricaud
B. K. Arbic
J. F. Shriver
F. Qiao
B. Xiao
A. Biastoch
A. Biastoch
R. Schubert
R. Schubert
B. Fox-Kemper
W. K. Dewar
W. K. Dewar
A. Wallcraft
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
Geoscientific Model Development
title Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
title_full Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
title_fullStr Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
title_full_unstemmed Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
title_short Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
title_sort cloud based framework for inter comparing submesoscale permitting realistic ocean models
url https://gmd.copernicus.org/articles/15/5829/2022/gmd-15-5829-2022.pdf
work_keys_str_mv AT tuchida cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT jlesommer cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT cstern cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT rpabernathey cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT choldgraf cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT aalbert cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT lbrodeau cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT lbrodeau cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT epchassignet cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT xxu cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT jgula cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT jgula cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT groullet cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT nkoldunov cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT sdanilov cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT qwang cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT dmenemenlis cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT cbricaud cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT bkarbic cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT jfshriver cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT fqiao cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT bxiao cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT abiastoch cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT abiastoch cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT rschubert cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT rschubert cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT bfoxkemper cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT wkdewar cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT wkdewar cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels
AT awallcraft cloudbasedframeworkforintercomparingsubmesoscalepermittingrealisticoceanmodels