A Robust and Real-Time Capable Envelope-Based Algorithm for Heart Sound Classification: Validation under Different Physiological Conditions

This paper proposes a robust and real-time capable algorithm for classification of the first and second heart sounds. The classification algorithm is based on the evaluation of the envelope curve of the phonocardiogram. For the evaluation, in contrast to other studies, measurements on 12 probands we...

Full description

Bibliographic Details
Main Authors: Angelika Thalmayer, Samuel Zeising, Georg Fischer, Jens Kirchner
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/4/972
Description
Summary:This paper proposes a robust and real-time capable algorithm for classification of the first and second heart sounds. The classification algorithm is based on the evaluation of the envelope curve of the phonocardiogram. For the evaluation, in contrast to other studies, measurements on 12 probands were conducted in different physiological conditions. Moreover, for each measurement the auscultation point, posture and physical stress were varied. The proposed envelope-based algorithm is tested with two different methods for envelope curve extraction: the Hilbert transform and the short-time Fourier transform. The performance of the classification of the first heart sounds is evaluated by using a reference electrocardiogram. Overall, by using the Hilbert transform, the algorithm has a better performance regarding the F<sub>1</sub>-score and computational effort. The proposed algorithm achieves for the S<sub>1</sub> classification an F<sub>1</sub>-score up to 95.7% and in average 90.5%. The algorithm is robust against the age, BMI, posture, heart rate and auscultation point (except measurements on the back) of the subjects.
ISSN:1424-8220