Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche

Abstract The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes...

Full description

Bibliographic Details
Main Authors: Ainara González-Iglesias, Aida Arcas, Ana Domingo-Muelas, Estefania Mancini, Joan Galcerán, Juan Valcárcel, Isabel Fariñas, M. Angela Nieto
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-47092-z
_version_ 1797219724792168448
author Ainara González-Iglesias
Aida Arcas
Ana Domingo-Muelas
Estefania Mancini
Joan Galcerán
Juan Valcárcel
Isabel Fariñas
M. Angela Nieto
author_facet Ainara González-Iglesias
Aida Arcas
Ana Domingo-Muelas
Estefania Mancini
Joan Galcerán
Juan Valcárcel
Isabel Fariñas
M. Angela Nieto
author_sort Ainara González-Iglesias
collection DOAJ
description Abstract The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.
first_indexed 2024-04-24T12:38:12Z
format Article
id doaj.art-4116623c87df4b3fb1ecede9d29f1a58
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-04-24T12:38:12Z
publishDate 2024-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-4116623c87df4b3fb1ecede9d29f1a582024-04-07T11:23:42ZengNature PortfolioNature Communications2041-17232024-04-0115111810.1038/s41467-024-47092-zIntron detention tightly regulates the stemness/differentiation switch in the adult neurogenic nicheAinara González-Iglesias0Aida Arcas1Ana Domingo-Muelas2Estefania Mancini3Joan Galcerán4Juan Valcárcel5Isabel Fariñas6M. Angela Nieto7Instituto de Neurociencias (CSIC-UMH)Instituto de Neurociencias (CSIC-UMH)Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de ValenciaCentre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyInstituto de Neurociencias (CSIC-UMH)Carlos Simon FoundationDepartamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de ValenciaInstituto de Neurociencias (CSIC-UMH)Abstract The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.https://doi.org/10.1038/s41467-024-47092-z
spellingShingle Ainara González-Iglesias
Aida Arcas
Ana Domingo-Muelas
Estefania Mancini
Joan Galcerán
Juan Valcárcel
Isabel Fariñas
M. Angela Nieto
Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
Nature Communications
title Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
title_full Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
title_fullStr Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
title_full_unstemmed Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
title_short Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche
title_sort intron detention tightly regulates the stemness differentiation switch in the adult neurogenic niche
url https://doi.org/10.1038/s41467-024-47092-z
work_keys_str_mv AT ainaragonzaleziglesias introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT aidaarcas introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT anadomingomuelas introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT estefaniamancini introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT joangalceran introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT juanvalcarcel introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT isabelfarinas introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche
AT mangelanieto introndetentiontightlyregulatesthestemnessdifferentiationswitchintheadultneurogenicniche