Pyrroloquinoline quinone influences intracellular alpha-synuclein aggregates

Parkinson’s disease (PD) is an irreversible neurodegenerative disorder clinically manifesting in uncontrolled motor symptoms. There are two primary hallmark features of Parkinson’s disease—an irreversible loss of dopaminergic neurons of the substantia nigra pars compacta and formation of intracellul...

Full description

Bibliographic Details
Main Authors: Elizabeth Mountford, Cynthia Mathew, Reena Ghildyal, Andrea Bugarcic, Vitor Francisco
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Experimental Results
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2516712X23000102/type/journal_article
Description
Summary:Parkinson’s disease (PD) is an irreversible neurodegenerative disorder clinically manifesting in uncontrolled motor symptoms. There are two primary hallmark features of Parkinson’s disease—an irreversible loss of dopaminergic neurons of the substantia nigra pars compacta and formation of intracellular insoluble aggregates called Lewy bodies mostly composed of alpha-synuclein. Using a clinical improvements-first approach, we identified several clinical trials involving consumption of a specific diet or nutritional supplementation that improved motor and nonmotor functions. Here, we aimed to investigate if and how pyrroloquinoline quinone (PQQ) compound disrupts preformed alpha-synuclein deposits using SH-SY5Y cells, widely used Parkinson’s disease cellular model. SH-SY5Y neuroblastoma cells, incubated in presence of potassium chloride (KCl) to induce alpha-synuclein protein aggregation, were treated with PQQ for up to 48 hr. Resulting aggregates were examined and quantified using confocal microscopy. Overall, nutritional compound PQQ reduced the average number and overall size of intracellular cytoplasmic alpha-synuclein aggregates in a PD cellular model.
ISSN:2516-712X