Fermi gas approach to general rank theories and quantum curves
Abstract It is known that matrix models computing the partition functions of three-dimensional N $$ \mathcal{N} $$ = 4 superconformal Chern-Simons theories described by circular quiver diagrams can be written as the partition functions of ideal Fermi gases when all the nodes have equal ranks. We ext...
Main Author: | Naotaka Kubo |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP10(2020)158 |
Similar Items
-
Topological phase, spin Chern-Simons theory and level rank duality on lens space
by: Naotaka Kubo, et al.
Published: (2022-04-01) -
3d N $$ \mathcal{N} $$ = 3 generalized Giveon-Kutasov duality
by: Naotaka Kubo, et al.
Published: (2022-04-01) -
Hanany-Witten transition in quantum curves
by: Naotaka Kubo, et al.
Published: (2019-12-01) -
From phase space to integrable representations and level-rank duality
by: Arghya Chattopadhyay, et al.
Published: (2018-05-01) -
Bosonizing three-dimensional quiver gauge theories
by: Kristan Jensen, et al.
Published: (2017-11-01)