Quasi-isomorphisms of cluster algebras and the combinatorics of webs (extended abstract)

We provide bijections between the cluster variables (and clusters) in two families of cluster algebras which have received considerable attention. These cluster algebras are the ones associated with certain Grassmannians of k-planes, and those associated with certain spaces of decorated SLk-local sy...

Full description

Bibliographic Details
Main Author: Chris Fraser
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2020-04-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/6395/pdf
Description
Summary:We provide bijections between the cluster variables (and clusters) in two families of cluster algebras which have received considerable attention. These cluster algebras are the ones associated with certain Grassmannians of k-planes, and those associated with certain spaces of decorated SLk-local systems in the disk in the work of Fock and Goncharov. When k is 3, this bijection can be described explicitly using the combinatorics of Kuperberg's basis of non-elliptic webs. Using our bijection and symmetries of these cluster algebras, we provide evidence for conjectures of Fomin and Pylyavskyy concerning cluster variables in Grassmannians of 3-planes. We also prove their conjecture that there are infinitely many indecomposable nonarborizable webs in the Grassmannian of 3-planes in 9-dimensional space.
ISSN:1365-8050