Effect of Growth Temperature on the Structural and Electrical Properties of ZrO2 Films Fabricated by Atomic Layer Deposition Using a CpZr[N(CH3)2]3/C7H8 Cocktail Precursor

The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO2) dielectric thin films that were fabricated using a CpZr[N(CH3)2]3/C7H8 cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO2 films grown at temperatures fro...

Full description

Bibliographic Details
Main Authors: Jong-Ki An, Nak-Kwan Chung, Jin-Tae Kim, Sung-Ho Hahm, Geunsu Lee, Sung Bo Lee, Taehoon Lee, In-Sung Park, Ju-Young Yun
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/11/3/386
Description
Summary:The effect of growth temperature on the atomic layer deposition of zirconium oxide (ZrO2) dielectric thin films that were fabricated using a CpZr[N(CH3)2]3/C7H8 cocktail precursor with ozone was investigated. The chemical, structural, and electrical properties of ZrO2 films grown at temperatures from 250 to 350 °C were characterized. Stoichiometric ZrO2 films formed at 250–350 °C with an atomic ratio of O to Zr of 1.8–1.9 and a low content of carbon impurities. The film formed at 300 °C was predominantly the tetragonal crystalline phase, whereas that formed at 350 °C was a mixture of tetragonal and monoclinic phases. Electrical properties, such as capacitance, leakage current, and voltage linearity of TiN/ZrO2/TiN capacitors fabricated using the thin ZrO2 films grown at different temperatures were compared capacitor applications. The ZrO2 film grown at 300 °C exhibited low impurity content, predominantly tetragonal crystalline structure, a high dielectric permittivity of 38.3, a low leakage current of below 10−7 A/cm2 at 2 V, and low-voltage linearity.
ISSN:1996-1944