Identifying and characterizing extrapolation in multivariate response data.

Faced with limitations in data availability, funding, and time constraints, ecologists are often tasked with making predictions beyond the range of their data. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous...

Full description

Bibliographic Details
Main Authors: Meridith L Bartley, Ephraim M Hanks, Erin M Schliep, Patricia A Soranno, Tyler Wagner
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0225715
Description
Summary:Faced with limitations in data availability, funding, and time constraints, ecologists are often tasked with making predictions beyond the range of their data. In ecological studies, it is not always obvious when and where extrapolation occurs because of the multivariate nature of the data. Previous work on identifying extrapolation has focused on univariate response data, but these methods are not directly applicable to multivariate response data, which are common in ecological investigations. In this paper, we extend previous work that identified extrapolation by applying the predictive variance from the univariate setting to the multivariate case. We propose using the trace or determinant of the predictive variance matrix to obtain a scalar value measure that, when paired with a selected cutoff value, allows for delineation between prediction and extrapolation. We illustrate our approach through an analysis of jointly modeled lake nutrients and indicators of algal biomass and water clarity in over 7000 inland lakes from across the Northeast and Mid-west US. In addition, we outline novel exploratory approaches for identifying regions of covariate space where extrapolation is more likely to occur using classification and regression trees. The use of our Multivariate Predictive Variance (MVPV) measures and multiple cutoff values when exploring the validity of predictions made from multivariate statistical models can help guide ecological inferences.
ISSN:1932-6203