Summary: | Abstract Aberrant expression of xenobiotic metabolism and DNA repair genes is critical to lung cancer pathogenesis. This study aims to identify the cis-regulatory variants of the genes modulating lung cancer risk among tobacco smokers and altering their chemotherapy responses. From a list of 2984 SNVs, prioritization and functional annotation revealed 22 cis-eQTLs of 14 genes within the gene expression-correlated DNase I hypersensitive sites using lung tissue-specific ENCODE, GTEx, Roadmap Epigenomics, and TCGA datasets. The 22 cis-regulatory variants predictably alter the binding of 44 transcription factors (TFs) expressed in lung tissue. Interestingly, 6 reported lung cancer-associated variants were found in linkage disequilibrium (LD) with 5 prioritized cis-eQTLs from our study. A case–control study with 3 promoter cis-eQTLs (p < 0.01) on 101 lung cancer patients and 401 healthy controls from eastern India with confirmed smoking history revealed an association of rs3764821 (ALDH3B1) (OR = 2.53, 95% CI = 1.57–4.07, p = 0.00014) and rs3748523 (RAD52) (OR = 1.69, 95% CI = 1.17–2.47, p = 0.006) with lung cancer risk. The effect of different chemotherapy regimens on the overall survival of lung cancer patients to the associated variants showed that the risk alleles of both variants significantly decreased (p < 0.05) patient survival.
|